// https://syzkaller.appspot.com/bug?id=011917f43a842b902d7c6670df3cf463ed06dc85
// autogenerated by syzkaller (https://github.com/google/syzkaller)

#define _GNU_SOURCE

#include <arpa/inet.h>
#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netinet/in.h>
#include <pthread.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

#include <linux/futex.h>
#include <linux/genetlink.h>
#include <linux/if_addr.h>
#include <linux/if_link.h>
#include <linux/in6.h>
#include <linux/neighbour.h>
#include <linux/net.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/veth.h>

#ifndef __NR_io_uring_enter
#define __NR_io_uring_enter 426
#endif
#ifndef __NR_io_uring_setup
#define __NR_io_uring_setup 425
#endif

static unsigned long long procid;

static __thread int clone_ongoing;
static __thread int skip_segv;
static __thread jmp_buf segv_env;

static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
  if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) {
    exit(sig);
  }
  uintptr_t addr = (uintptr_t)info->si_addr;
  const uintptr_t prog_start = 1 << 20;
  const uintptr_t prog_end = 100 << 20;
  int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0;
  int valid = addr < prog_start || addr > prog_end;
  if (skip && valid) {
    _longjmp(segv_env, 1);
  }
  exit(sig);
}

static void install_segv_handler(void)
{
  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sa.sa_handler = SIG_IGN;
  syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
  syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
  memset(&sa, 0, sizeof(sa));
  sa.sa_sigaction = segv_handler;
  sa.sa_flags = SA_NODEFER | SA_SIGINFO;
  sigaction(SIGSEGV, &sa, NULL);
  sigaction(SIGBUS, &sa, NULL);
}

#define NONFAILING(...)                                                        \
  ({                                                                           \
    int ok = 1;                                                                \
    __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
    if (_setjmp(segv_env) == 0) {                                              \
      __VA_ARGS__;                                                             \
    } else                                                                     \
      ok = 0;                                                                  \
    __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
    ok;                                                                        \
  })

static void sleep_ms(uint64_t ms)
{
  usleep(ms * 1000);
}

static uint64_t current_time_ms(void)
{
  struct timespec ts;
  if (clock_gettime(CLOCK_MONOTONIC, &ts))
    exit(1);
  return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}

static void thread_start(void* (*fn)(void*), void* arg)
{
  pthread_t th;
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setstacksize(&attr, 128 << 10);
  int i = 0;
  for (; i < 100; i++) {
    if (pthread_create(&th, &attr, fn, arg) == 0) {
      pthread_attr_destroy(&attr);
      return;
    }
    if (errno == EAGAIN) {
      usleep(50);
      continue;
    }
    break;
  }
  exit(1);
}

typedef struct {
  int state;
} event_t;

static void event_init(event_t* ev)
{
  ev->state = 0;
}

static void event_reset(event_t* ev)
{
  ev->state = 0;
}

static void event_set(event_t* ev)
{
  if (ev->state)
    exit(1);
  __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
  syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000);
}

static void event_wait(event_t* ev)
{
  while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
    syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0);
}

static int event_isset(event_t* ev)
{
  return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}

static int event_timedwait(event_t* ev, uint64_t timeout)
{
  uint64_t start = current_time_ms();
  uint64_t now = start;
  for (;;) {
    uint64_t remain = timeout - (now - start);
    struct timespec ts;
    ts.tv_sec = remain / 1000;
    ts.tv_nsec = (remain % 1000) * 1000 * 1000;
    syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts);
    if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
      return 1;
    now = current_time_ms();
    if (now - start > timeout)
      return 0;
  }
}

static bool write_file(const char* file, const char* what, ...)
{
  char buf[1024];
  va_list args;
  va_start(args, what);
  vsnprintf(buf, sizeof(buf), what, args);
  va_end(args);
  buf[sizeof(buf) - 1] = 0;
  int len = strlen(buf);
  int fd = open(file, O_WRONLY | O_CLOEXEC);
  if (fd == -1)
    return false;
  if (write(fd, buf, len) != len) {
    int err = errno;
    close(fd);
    errno = err;
    return false;
  }
  close(fd);
  return true;
}

struct nlmsg {
  char* pos;
  int nesting;
  struct nlattr* nested[8];
  char buf[4096];
};

static void netlink_init(struct nlmsg* nlmsg, int typ, int flags,
                         const void* data, int size)
{
  memset(nlmsg, 0, sizeof(*nlmsg));
  struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
  hdr->nlmsg_type = typ;
  hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
  memcpy(hdr + 1, data, size);
  nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size);
}

static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data,
                         int size)
{
  struct nlattr* attr = (struct nlattr*)nlmsg->pos;
  attr->nla_len = sizeof(*attr) + size;
  attr->nla_type = typ;
  if (size > 0)
    memcpy(attr + 1, data, size);
  nlmsg->pos += NLMSG_ALIGN(attr->nla_len);
}

static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type,
                            int* reply_len, bool dofail)
{
  if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting)
    exit(1);
  struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
  hdr->nlmsg_len = nlmsg->pos - nlmsg->buf;
  struct sockaddr_nl addr;
  memset(&addr, 0, sizeof(addr));
  addr.nl_family = AF_NETLINK;
  ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0,
                     (struct sockaddr*)&addr, sizeof(addr));
  if (n != (ssize_t)hdr->nlmsg_len) {
    if (dofail)
      exit(1);
    return -1;
  }
  n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0);
  if (reply_len)
    *reply_len = 0;
  if (n < 0) {
    if (dofail)
      exit(1);
    return -1;
  }
  if (n < (ssize_t)sizeof(struct nlmsghdr)) {
    errno = EINVAL;
    if (dofail)
      exit(1);
    return -1;
  }
  if (hdr->nlmsg_type == NLMSG_DONE)
    return 0;
  if (reply_len && hdr->nlmsg_type == reply_type) {
    *reply_len = n;
    return 0;
  }
  if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) {
    errno = EINVAL;
    if (dofail)
      exit(1);
    return -1;
  }
  if (hdr->nlmsg_type != NLMSG_ERROR) {
    errno = EINVAL;
    if (dofail)
      exit(1);
    return -1;
  }
  errno = -((struct nlmsgerr*)(hdr + 1))->error;
  return -errno;
}

static int netlink_query_family_id(struct nlmsg* nlmsg, int sock,
                                   const char* family_name, bool dofail)
{
  struct genlmsghdr genlhdr;
  memset(&genlhdr, 0, sizeof(genlhdr));
  genlhdr.cmd = CTRL_CMD_GETFAMILY;
  netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr));
  netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name,
               strnlen(family_name, GENL_NAMSIZ - 1) + 1);
  int n = 0;
  int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail);
  if (err < 0) {
    return -1;
  }
  uint16_t id = 0;
  struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN +
                                         NLMSG_ALIGN(sizeof(genlhdr)));
  for (; (char*)attr < nlmsg->buf + n;
       attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
    if (attr->nla_type == CTRL_ATTR_FAMILY_ID) {
      id = *(uint16_t*)(attr + 1);
      break;
    }
  }
  if (!id) {
    errno = EINVAL;
    return -1;
  }
  recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0);
  return id;
}

#define SIZEOF_IO_URING_SQE 64
#define SIZEOF_IO_URING_CQE 16
#define SQ_HEAD_OFFSET 0
#define SQ_TAIL_OFFSET 64
#define SQ_RING_MASK_OFFSET 256
#define SQ_RING_ENTRIES_OFFSET 264
#define SQ_FLAGS_OFFSET 276
#define SQ_DROPPED_OFFSET 272
#define CQ_HEAD_OFFSET 128
#define CQ_TAIL_OFFSET 192
#define CQ_RING_MASK_OFFSET 260
#define CQ_RING_ENTRIES_OFFSET 268
#define CQ_RING_OVERFLOW_OFFSET 284
#define CQ_FLAGS_OFFSET 280
#define CQ_CQES_OFFSET 320

struct io_sqring_offsets {
  uint32_t head;
  uint32_t tail;
  uint32_t ring_mask;
  uint32_t ring_entries;
  uint32_t flags;
  uint32_t dropped;
  uint32_t array;
  uint32_t resv1;
  uint64_t resv2;
};

struct io_cqring_offsets {
  uint32_t head;
  uint32_t tail;
  uint32_t ring_mask;
  uint32_t ring_entries;
  uint32_t overflow;
  uint32_t cqes;
  uint64_t resv[2];
};

struct io_uring_params {
  uint32_t sq_entries;
  uint32_t cq_entries;
  uint32_t flags;
  uint32_t sq_thread_cpu;
  uint32_t sq_thread_idle;
  uint32_t features;
  uint32_t resv[4];
  struct io_sqring_offsets sq_off;
  struct io_cqring_offsets cq_off;
};

#define IORING_OFF_SQ_RING 0
#define IORING_OFF_SQES 0x10000000ULL

static long syz_io_uring_setup(volatile long a0, volatile long a1,
                               volatile long a2, volatile long a3,
                               volatile long a4, volatile long a5)
{
  uint32_t entries = (uint32_t)a0;
  struct io_uring_params* setup_params = (struct io_uring_params*)a1;
  void* vma1 = (void*)a2;
  void* vma2 = (void*)a3;
  void** ring_ptr_out = (void**)a4;
  void** sqes_ptr_out = (void**)a5;
  uint32_t fd_io_uring = syscall(__NR_io_uring_setup, entries, setup_params);
  uint32_t sq_ring_sz =
      setup_params->sq_off.array + setup_params->sq_entries * sizeof(uint32_t);
  uint32_t cq_ring_sz = setup_params->cq_off.cqes +
                        setup_params->cq_entries * SIZEOF_IO_URING_CQE;
  uint32_t ring_sz = sq_ring_sz > cq_ring_sz ? sq_ring_sz : cq_ring_sz;
  *ring_ptr_out = mmap(vma1, ring_sz, PROT_READ | PROT_WRITE,
                       MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd_io_uring,
                       IORING_OFF_SQ_RING);
  uint32_t sqes_sz = setup_params->sq_entries * SIZEOF_IO_URING_SQE;
  *sqes_ptr_out =
      mmap(vma2, sqes_sz, PROT_READ | PROT_WRITE,
           MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd_io_uring, IORING_OFF_SQES);
  return fd_io_uring;
}

static long syz_io_uring_submit(volatile long a0, volatile long a1,
                                volatile long a2, volatile long a3)
{
  char* ring_ptr = (char*)a0;
  char* sqes_ptr = (char*)a1;
  char* sqe = (char*)a2;
  uint32_t sqes_index = (uint32_t)a3;
  uint32_t sq_ring_entries = *(uint32_t*)(ring_ptr + SQ_RING_ENTRIES_OFFSET);
  uint32_t cq_ring_entries = *(uint32_t*)(ring_ptr + CQ_RING_ENTRIES_OFFSET);
  uint32_t sq_array_off =
      (CQ_CQES_OFFSET + cq_ring_entries * SIZEOF_IO_URING_CQE + 63) & ~63;
  if (sq_ring_entries)
    sqes_index %= sq_ring_entries;
  char* sqe_dest = sqes_ptr + sqes_index * SIZEOF_IO_URING_SQE;
  memcpy(sqe_dest, sqe, SIZEOF_IO_URING_SQE);
  uint32_t sq_ring_mask = *(uint32_t*)(ring_ptr + SQ_RING_MASK_OFFSET);
  uint32_t* sq_tail_ptr = (uint32_t*)(ring_ptr + SQ_TAIL_OFFSET);
  uint32_t sq_tail = *sq_tail_ptr & sq_ring_mask;
  uint32_t sq_tail_next = *sq_tail_ptr + 1;
  uint32_t* sq_array = (uint32_t*)(ring_ptr + sq_array_off);
  *(sq_array + sq_tail) = sqes_index;
  __atomic_store_n(sq_tail_ptr, sq_tail_next, __ATOMIC_RELEASE);
  return 0;
}

static long syz_memcpy_off(volatile long a0, volatile long a1, volatile long a2,
                           volatile long a3, volatile long a4)
{
  char* dest = (char*)a0;
  uint32_t dest_off = (uint32_t)a1;
  char* src = (char*)a2;
  uint32_t src_off = (uint32_t)a3;
  size_t n = (size_t)a4;
  return (long)memcpy(dest + dest_off, src + src_off, n);
}

static long syz_genetlink_get_family_id(volatile long name,
                                        volatile long sock_arg)
{
  int fd = sock_arg;
  if (fd < 0) {
    fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
    if (fd == -1) {
      return -1;
    }
  }
  struct nlmsg nlmsg_tmp;
  int ret = netlink_query_family_id(&nlmsg_tmp, fd, (char*)name, false);
  if ((int)sock_arg < 0)
    close(fd);
  if (ret < 0) {
    return -1;
  }
  return ret;
}

static void kill_and_wait(int pid, int* status)
{
  kill(-pid, SIGKILL);
  kill(pid, SIGKILL);
  for (int i = 0; i < 100; i++) {
    if (waitpid(-1, status, WNOHANG | __WALL) == pid)
      return;
    usleep(1000);
  }
  DIR* dir = opendir("/sys/fs/fuse/connections");
  if (dir) {
    for (;;) {
      struct dirent* ent = readdir(dir);
      if (!ent)
        break;
      if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
        continue;
      char abort[300];
      snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort",
               ent->d_name);
      int fd = open(abort, O_WRONLY);
      if (fd == -1) {
        continue;
      }
      if (write(fd, abort, 1) < 0) {
      }
      close(fd);
    }
    closedir(dir);
  } else {
  }
  while (waitpid(-1, status, __WALL) != pid) {
  }
}

static void setup_test()
{
  prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
  setpgrp();
  write_file("/proc/self/oom_score_adj", "1000");
}

struct thread_t {
  int created, call;
  event_t ready, done;
};

static struct thread_t threads[16];
static void execute_call(int call);
static int running;

static void* thr(void* arg)
{
  struct thread_t* th = (struct thread_t*)arg;
  for (;;) {
    event_wait(&th->ready);
    event_reset(&th->ready);
    execute_call(th->call);
    __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED);
    event_set(&th->done);
  }
  return 0;
}

static void execute_one(void)
{
  int i, call, thread;
  for (call = 0; call < 12; call++) {
    for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0]));
         thread++) {
      struct thread_t* th = &threads[thread];
      if (!th->created) {
        th->created = 1;
        event_init(&th->ready);
        event_init(&th->done);
        event_set(&th->done);
        thread_start(thr, th);
      }
      if (!event_isset(&th->done))
        continue;
      event_reset(&th->done);
      th->call = call;
      __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED);
      event_set(&th->ready);
      event_timedwait(&th->done, 50);
      break;
    }
  }
  for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++)
    sleep_ms(1);
}

static void execute_one(void);

#define WAIT_FLAGS __WALL

static void loop(void)
{
  int iter = 0;
  for (;; iter++) {
    int pid = fork();
    if (pid < 0)
      exit(1);
    if (pid == 0) {
      setup_test();
      execute_one();
      exit(0);
    }
    int status = 0;
    uint64_t start = current_time_ms();
    for (;;) {
      if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
        break;
      sleep_ms(1);
      if (current_time_ms() - start < 5000)
        continue;
      kill_and_wait(pid, &status);
      break;
    }
  }
}

uint64_t r[4] = {0xffffffffffffffff, 0xffffffffffffffff, 0x0, 0x0};

void execute_call(int call)
{
  intptr_t res = 0;
  switch (call) {
  case 0:
    syscall(__NR_prctl, 0x3eul, 1ul, 0, 2ul, 0ul);
    break;
  case 1:
    syscall(__NR_sendmsg, -1, 0ul, 0ul);
    break;
  case 2:
    res = syscall(__NR_socket, 0xaul, 2ul, 0x88);
    if (res != -1)
      r[0] = res;
    break;
  case 3:
    NONFAILING(*(uint32_t*)0x200001c4 = 0x935d);
    NONFAILING(*(uint32_t*)0x200001c8 = 0);
    NONFAILING(*(uint32_t*)0x200001cc = 0);
    NONFAILING(*(uint32_t*)0x200001d0 = 0);
    NONFAILING(*(uint32_t*)0x200001d8 = -1);
    NONFAILING(memset((void*)0x200001dc, 0, 12));
    res = -1;
    NONFAILING(res = syz_io_uring_setup(0x568, 0x200001c0, 0x20ffb000,
                                        0x20ffc000, 0x20000040, 0x200000c0));
    if (res != -1) {
      r[1] = res;
      NONFAILING(r[2] = *(uint64_t*)0x20000040);
      NONFAILING(r[3] = *(uint64_t*)0x200000c0);
    }
    break;
  case 4:
    syscall(__NR_clock_gettime, 1ul, 0ul);
    break;
  case 5:
    NONFAILING(*(uint8_t*)0x20000080 = 0x1b);
    NONFAILING(*(uint8_t*)0x20000081 = 0x70);
    NONFAILING(*(uint16_t*)0x20000082 = 0);
    NONFAILING(*(uint32_t*)0x20000084 = r[0]);
    NONFAILING(*(uint64_t*)0x20000088 = 0);
    NONFAILING(*(uint64_t*)0x20000090 = 0);
    NONFAILING(*(uint32_t*)0x20000098 = 0);
    NONFAILING(*(uint32_t*)0x2000009c = 0);
    NONFAILING(*(uint64_t*)0x200000a0 = 0);
    NONFAILING(*(uint16_t*)0x200000a8 = 0);
    NONFAILING(*(uint16_t*)0x200000aa = 0);
    NONFAILING(memset((void*)0x200000ac, 0, 20));
    NONFAILING(syz_io_uring_submit(r[2], r[3], 0x20000080, 0));
    break;
  case 6:
    syscall(__NR_write, -1, 0ul, 0ul);
    break;
  case 7:
    syscall(__NR_ioctl, -1, 0x4b2f, 1ul);
    break;
  case 8:
    NONFAILING(*(uint32_t*)0x20000140 = 0x307e);
    NONFAILING(syz_memcpy_off(r[2], 0x40, 0x20000140, 0, 4));
    break;
  case 9:
    syscall(__NR_io_uring_enter, r[1], 0x2905, 0, 2ul, 0ul, 0ul);
    break;
  case 10:
    syscall(__NR_recvmsg, -1, 0ul, 0x20ul, 0);
    break;
  case 11:
    NONFAILING(syz_genetlink_get_family_id(0, -1));
    break;
  }
}
int main(void)
{
  syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
  syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul);
  syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul);
  install_segv_handler();
  for (procid = 0; procid < 6; procid++) {
    if (fork() == 0) {
      loop();
    }
  }
  sleep(1000000);
  return 0;
}