// https://syzkaller.appspot.com/bug?id=ca42a481e0bd58567705048a2b30a3b99c5c801a
// autogenerated by syzkaller (https://github.com/google/syzkaller)

#define _GNU_SOURCE

#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#include <linux/capability.h>
#include <linux/kvm.h>
#include <linux/loop.h>

#ifndef __NR_memfd_create
#define __NR_memfd_create 319
#endif

static unsigned long long procid;

static __thread int clone_ongoing;
static __thread int skip_segv;
static __thread jmp_buf segv_env;

static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
  if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) {
    exit(sig);
  }
  uintptr_t addr = (uintptr_t)info->si_addr;
  const uintptr_t prog_start = 1 << 20;
  const uintptr_t prog_end = 100 << 20;
  int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0;
  int valid = addr < prog_start || addr > prog_end;
  if (skip && valid) {
    _longjmp(segv_env, 1);
  }
  exit(sig);
}

static void install_segv_handler(void)
{
  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sa.sa_handler = SIG_IGN;
  syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
  syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
  memset(&sa, 0, sizeof(sa));
  sa.sa_sigaction = segv_handler;
  sa.sa_flags = SA_NODEFER | SA_SIGINFO;
  sigaction(SIGSEGV, &sa, NULL);
  sigaction(SIGBUS, &sa, NULL);
}

#define NONFAILING(...)                                                        \
  ({                                                                           \
    int ok = 1;                                                                \
    __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
    if (_setjmp(segv_env) == 0) {                                              \
      __VA_ARGS__;                                                             \
    } else                                                                     \
      ok = 0;                                                                  \
    __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
    ok;                                                                        \
  })

static void use_temporary_dir(void)
{
  char tmpdir_template[] = "./syzkaller.XXXXXX";
  char* tmpdir = mkdtemp(tmpdir_template);
  if (!tmpdir)
    exit(1);
  if (chmod(tmpdir, 0777))
    exit(1);
  if (chdir(tmpdir))
    exit(1);
}

static bool write_file(const char* file, const char* what, ...)
{
  char buf[1024];
  va_list args;
  va_start(args, what);
  vsnprintf(buf, sizeof(buf), what, args);
  va_end(args);
  buf[sizeof(buf) - 1] = 0;
  int len = strlen(buf);
  int fd = open(file, O_WRONLY | O_CLOEXEC);
  if (fd == -1)
    return false;
  if (write(fd, buf, len) != len) {
    int err = errno;
    close(fd);
    errno = err;
    return false;
  }
  close(fd);
  return true;
}

//% This code is derived from puff.{c,h}, found in the zlib development. The
//% original files come with the following copyright notice:

//% Copyright (C) 2002-2013 Mark Adler, all rights reserved
//% version 2.3, 21 Jan 2013
//% This software is provided 'as-is', without any express or implied
//% warranty.  In no event will the author be held liable for any damages
//% arising from the use of this software.
//% Permission is granted to anyone to use this software for any purpose,
//% including commercial applications, and to alter it and redistribute it
//% freely, subject to the following restrictions:
//% 1. The origin of this software must not be misrepresented; you must not
//%    claim that you wrote the original software. If you use this software
//%    in a product, an acknowledgment in the product documentation would be
//%    appreciated but is not required.
//% 2. Altered source versions must be plainly marked as such, and must not be
//%    misrepresented as being the original software.
//% 3. This notice may not be removed or altered from any source distribution.
//% Mark Adler    madler@alumni.caltech.edu

//% BEGIN CODE DERIVED FROM puff.{c,h}

#define MAXBITS 15
#define MAXLCODES 286
#define MAXDCODES 30
#define MAXCODES (MAXLCODES + MAXDCODES)
#define FIXLCODES 288

struct puff_state {
  unsigned char* out;
  unsigned long outlen;
  unsigned long outcnt;
  const unsigned char* in;
  unsigned long inlen;
  unsigned long incnt;
  int bitbuf;
  int bitcnt;
  jmp_buf env;
};
static int puff_bits(struct puff_state* s, int need)
{
  long val = s->bitbuf;
  while (s->bitcnt < need) {
    if (s->incnt == s->inlen)
      longjmp(s->env, 1);
    val |= (long)(s->in[s->incnt++]) << s->bitcnt;
    s->bitcnt += 8;
  }
  s->bitbuf = (int)(val >> need);
  s->bitcnt -= need;
  return (int)(val & ((1L << need) - 1));
}
static int puff_stored(struct puff_state* s)
{
  s->bitbuf = 0;
  s->bitcnt = 0;
  if (s->incnt + 4 > s->inlen)
    return 2;
  unsigned len = s->in[s->incnt++];
  len |= s->in[s->incnt++] << 8;
  if (s->in[s->incnt++] != (~len & 0xff) ||
      s->in[s->incnt++] != ((~len >> 8) & 0xff))
    return -2;
  if (s->incnt + len > s->inlen)
    return 2;
  if (s->outcnt + len > s->outlen)
    return 1;
  for (; len--; s->outcnt++, s->incnt++) {
    if (s->in[s->incnt])
      s->out[s->outcnt] = s->in[s->incnt];
  }
  return 0;
}
struct puff_huffman {
  short* count;
  short* symbol;
};
static int puff_decode(struct puff_state* s, const struct puff_huffman* h)
{
  int first = 0;
  int index = 0;
  int bitbuf = s->bitbuf;
  int left = s->bitcnt;
  int code = first = index = 0;
  int len = 1;
  short* next = h->count + 1;
  while (1) {
    while (left--) {
      code |= bitbuf & 1;
      bitbuf >>= 1;
      int count = *next++;
      if (code - count < first) {
        s->bitbuf = bitbuf;
        s->bitcnt = (s->bitcnt - len) & 7;
        return h->symbol[index + (code - first)];
      }
      index += count;
      first += count;
      first <<= 1;
      code <<= 1;
      len++;
    }
    left = (MAXBITS + 1) - len;
    if (left == 0)
      break;
    if (s->incnt == s->inlen)
      longjmp(s->env, 1);
    bitbuf = s->in[s->incnt++];
    if (left > 8)
      left = 8;
  }
  return -10;
}
static int puff_construct(struct puff_huffman* h, const short* length, int n)
{
  int len;
  for (len = 0; len <= MAXBITS; len++)
    h->count[len] = 0;
  int symbol;
  for (symbol = 0; symbol < n; symbol++)
    (h->count[length[symbol]])++;
  if (h->count[0] == n)
    return 0;
  int left = 1;
  for (len = 1; len <= MAXBITS; len++) {
    left <<= 1;
    left -= h->count[len];
    if (left < 0)
      return left;
  }
  short offs[MAXBITS + 1];
  offs[1] = 0;
  for (len = 1; len < MAXBITS; len++)
    offs[len + 1] = offs[len] + h->count[len];
  for (symbol = 0; symbol < n; symbol++)
    if (length[symbol] != 0)
      h->symbol[offs[length[symbol]]++] = symbol;
  return left;
}
static int puff_codes(struct puff_state* s, const struct puff_huffman* lencode,
                      const struct puff_huffman* distcode)
{
  static const short lens[29] = {3,  4,  5,  6,   7,   8,   9,   10,  11, 13,
                                 15, 17, 19, 23,  27,  31,  35,  43,  51, 59,
                                 67, 83, 99, 115, 131, 163, 195, 227, 258};
  static const short lext[29] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
                                 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
  static const short dists[30] = {
      1,    2,    3,    4,    5,    7,    9,    13,    17,    25,
      33,   49,   65,   97,   129,  193,  257,  385,   513,   769,
      1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};
  static const short dext[30] = {0, 0, 0,  0,  1,  1,  2,  2,  3,  3,
                                 4, 4, 5,  5,  6,  6,  7,  7,  8,  8,
                                 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
  int symbol;
  do {
    symbol = puff_decode(s, lencode);
    if (symbol < 0)
      return symbol;
    if (symbol < 256) {
      if (s->outcnt == s->outlen)
        return 1;
      if (symbol)
        s->out[s->outcnt] = symbol;
      s->outcnt++;
    } else if (symbol > 256) {
      symbol -= 257;
      if (symbol >= 29)
        return -10;
      int len = lens[symbol] + puff_bits(s, lext[symbol]);
      symbol = puff_decode(s, distcode);
      if (symbol < 0)
        return symbol;
      unsigned dist = dists[symbol] + puff_bits(s, dext[symbol]);
      if (dist > s->outcnt)
        return -11;
      if (s->outcnt + len > s->outlen)
        return 1;
      while (len--) {
        if (dist <= s->outcnt && s->out[s->outcnt - dist])
          s->out[s->outcnt] = s->out[s->outcnt - dist];
        s->outcnt++;
      }
    }
  } while (symbol != 256);
  return 0;
}
static int puff_fixed(struct puff_state* s)
{
  static int virgin = 1;
  static short lencnt[MAXBITS + 1], lensym[FIXLCODES];
  static short distcnt[MAXBITS + 1], distsym[MAXDCODES];
  static struct puff_huffman lencode, distcode;
  if (virgin) {
    lencode.count = lencnt;
    lencode.symbol = lensym;
    distcode.count = distcnt;
    distcode.symbol = distsym;
    short lengths[FIXLCODES];
    int symbol;
    for (symbol = 0; symbol < 144; symbol++)
      lengths[symbol] = 8;
    for (; symbol < 256; symbol++)
      lengths[symbol] = 9;
    for (; symbol < 280; symbol++)
      lengths[symbol] = 7;
    for (; symbol < FIXLCODES; symbol++)
      lengths[symbol] = 8;
    puff_construct(&lencode, lengths, FIXLCODES);
    for (symbol = 0; symbol < MAXDCODES; symbol++)
      lengths[symbol] = 5;
    puff_construct(&distcode, lengths, MAXDCODES);
    virgin = 0;
  }
  return puff_codes(s, &lencode, &distcode);
}
static int puff_dynamic(struct puff_state* s)
{
  static const short order[19] = {16, 17, 18, 0, 8,  7, 9,  6, 10, 5,
                                  11, 4,  12, 3, 13, 2, 14, 1, 15};
  int nlen = puff_bits(s, 5) + 257;
  int ndist = puff_bits(s, 5) + 1;
  int ncode = puff_bits(s, 4) + 4;
  if (nlen > MAXLCODES || ndist > MAXDCODES)
    return -3;
  short lengths[MAXCODES];
  int index;
  for (index = 0; index < ncode; index++)
    lengths[order[index]] = puff_bits(s, 3);
  for (; index < 19; index++)
    lengths[order[index]] = 0;
  short lencnt[MAXBITS + 1], lensym[MAXLCODES];
  struct puff_huffman lencode = {lencnt, lensym};
  int err = puff_construct(&lencode, lengths, 19);
  if (err != 0)
    return -4;
  index = 0;
  while (index < nlen + ndist) {
    int symbol;
    int len;
    symbol = puff_decode(s, &lencode);
    if (symbol < 0)
      return symbol;
    if (symbol < 16)
      lengths[index++] = symbol;
    else {
      len = 0;
      if (symbol == 16) {
        if (index == 0)
          return -5;
        len = lengths[index - 1];
        symbol = 3 + puff_bits(s, 2);
      } else if (symbol == 17)
        symbol = 3 + puff_bits(s, 3);
      else
        symbol = 11 + puff_bits(s, 7);
      if (index + symbol > nlen + ndist)
        return -6;
      while (symbol--)
        lengths[index++] = len;
    }
  }
  if (lengths[256] == 0)
    return -9;
  err = puff_construct(&lencode, lengths, nlen);
  if (err && (err < 0 || nlen != lencode.count[0] + lencode.count[1]))
    return -7;
  short distcnt[MAXBITS + 1], distsym[MAXDCODES];
  struct puff_huffman distcode = {distcnt, distsym};
  err = puff_construct(&distcode, lengths + nlen, ndist);
  if (err && (err < 0 || ndist != distcode.count[0] + distcode.count[1]))
    return -8;
  return puff_codes(s, &lencode, &distcode);
}
static int puff(unsigned char* dest, unsigned long* destlen,
                const unsigned char* source, unsigned long sourcelen)
{
  struct puff_state s = {
      .out = dest,
      .outlen = *destlen,
      .outcnt = 0,
      .in = source,
      .inlen = sourcelen,
      .incnt = 0,
      .bitbuf = 0,
      .bitcnt = 0,
  };
  int err;
  if (setjmp(s.env) != 0)
    err = 2;
  else {
    int last;
    do {
      last = puff_bits(&s, 1);
      int type = puff_bits(&s, 2);
      err = type == 0 ? puff_stored(&s)
                      : (type == 1 ? puff_fixed(&s)
                                   : (type == 2 ? puff_dynamic(&s) : -1));
      if (err != 0)
        break;
    } while (!last);
  }
  *destlen = s.outcnt;
  return err;
}

//% END CODE DERIVED FROM puff.{c,h}

#define ZLIB_HEADER_WIDTH 2

static int puff_zlib_to_file(const unsigned char* source,
                             unsigned long sourcelen, int dest_fd)
{
  if (sourcelen < ZLIB_HEADER_WIDTH)
    return 0;
  source += ZLIB_HEADER_WIDTH;
  sourcelen -= ZLIB_HEADER_WIDTH;
  const unsigned long max_destlen = 132 << 20;
  void* ret = mmap(0, max_destlen, PROT_WRITE | PROT_READ,
                   MAP_PRIVATE | MAP_ANON, -1, 0);
  if (ret == MAP_FAILED)
    return -1;
  unsigned char* dest = (unsigned char*)ret;
  unsigned long destlen = max_destlen;
  int err = puff(dest, &destlen, source, sourcelen);
  if (err) {
    munmap(dest, max_destlen);
    errno = -err;
    return -1;
  }
  if (write(dest_fd, dest, destlen) != (ssize_t)destlen) {
    munmap(dest, max_destlen);
    return -1;
  }
  return munmap(dest, max_destlen);
}

static int setup_loop_device(unsigned char* data, unsigned long size,
                             const char* loopname, int* loopfd_p)
{
  int err = 0, loopfd = -1;
  int memfd = syscall(__NR_memfd_create, "syzkaller", 0);
  if (memfd == -1) {
    err = errno;
    goto error;
  }
  if (puff_zlib_to_file(data, size, memfd)) {
    err = errno;
    goto error_close_memfd;
  }
  loopfd = open(loopname, O_RDWR);
  if (loopfd == -1) {
    err = errno;
    goto error_close_memfd;
  }
  if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
    if (errno != EBUSY) {
      err = errno;
      goto error_close_loop;
    }
    ioctl(loopfd, LOOP_CLR_FD, 0);
    usleep(1000);
    if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
      err = errno;
      goto error_close_loop;
    }
  }
  close(memfd);
  *loopfd_p = loopfd;
  return 0;

error_close_loop:
  close(loopfd);
error_close_memfd:
  close(memfd);
error:
  errno = err;
  return -1;
}

static void reset_loop_device(const char* loopname)
{
  int loopfd = open(loopname, O_RDWR);
  if (loopfd == -1) {
    return;
  }
  if (ioctl(loopfd, LOOP_CLR_FD, 0)) {
  }
  close(loopfd);
}

static long syz_mount_image(volatile long fsarg, volatile long dir,
                            volatile long flags, volatile long optsarg,
                            volatile long change_dir,
                            volatile unsigned long size, volatile long image)
{
  unsigned char* data = (unsigned char*)image;
  int res = -1, err = 0, need_loop_device = !!size;
  char* mount_opts = (char*)optsarg;
  char* target = (char*)dir;
  char* fs = (char*)fsarg;
  char* source = NULL;
  char loopname[64];
  if (need_loop_device) {
    int loopfd;
    memset(loopname, 0, sizeof(loopname));
    snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
    if (setup_loop_device(data, size, loopname, &loopfd) == -1)
      return -1;
    close(loopfd);
    source = loopname;
  }
  mkdir(target, 0777);
  char opts[256];
  memset(opts, 0, sizeof(opts));
  if (strlen(mount_opts) > (sizeof(opts) - 32)) {
  }
  strncpy(opts, mount_opts, sizeof(opts) - 32);
  if (strcmp(fs, "iso9660") == 0) {
    flags |= MS_RDONLY;
  } else if (strncmp(fs, "ext", 3) == 0) {
    bool has_remount_ro = false;
    char* remount_ro_start = strstr(opts, "errors=remount-ro");
    if (remount_ro_start != NULL) {
      char after = *(remount_ro_start + strlen("errors=remount-ro"));
      char before = remount_ro_start == opts ? '\0' : *(remount_ro_start - 1);
      has_remount_ro = ((before == '\0' || before == ',') &&
                        (after == '\0' || after == ','));
    }
    if (strstr(opts, "errors=panic") || !has_remount_ro)
      strcat(opts, ",errors=continue");
  } else if (strcmp(fs, "xfs") == 0) {
    strcat(opts, ",nouuid");
  }
  res = mount(source, target, fs, flags, opts);
  if (res == -1) {
    err = errno;
    goto error_clear_loop;
  }
  res = open(target, O_RDONLY | O_DIRECTORY);
  if (res == -1) {
    err = errno;
    goto error_clear_loop;
  }
  if (change_dir) {
    res = chdir(target);
    if (res == -1) {
      err = errno;
    }
  }

error_clear_loop:
  if (need_loop_device)
    reset_loop_device(loopname);
  errno = err;
  return res;
}

#define ADDR_TEXT 0x0000
#define ADDR_GDT 0x1000
#define ADDR_LDT 0x1800
#define ADDR_PML4 0x2000
#define ADDR_PDP 0x3000
#define ADDR_PD 0x4000
#define ADDR_STACK0 0x0f80
#define ADDR_VAR_HLT 0x2800
#define ADDR_VAR_SYSRET 0x2808
#define ADDR_VAR_SYSEXIT 0x2810
#define ADDR_VAR_IDT 0x3800
#define ADDR_VAR_TSS64 0x3a00
#define ADDR_VAR_TSS64_CPL3 0x3c00
#define ADDR_VAR_TSS16 0x3d00
#define ADDR_VAR_TSS16_2 0x3e00
#define ADDR_VAR_TSS16_CPL3 0x3f00
#define ADDR_VAR_TSS32 0x4800
#define ADDR_VAR_TSS32_2 0x4a00
#define ADDR_VAR_TSS32_CPL3 0x4c00
#define ADDR_VAR_TSS32_VM86 0x4e00
#define ADDR_VAR_VMXON_PTR 0x5f00
#define ADDR_VAR_VMCS_PTR 0x5f08
#define ADDR_VAR_VMEXIT_PTR 0x5f10
#define ADDR_VAR_VMWRITE_FLD 0x5f18
#define ADDR_VAR_VMWRITE_VAL 0x5f20
#define ADDR_VAR_VMXON 0x6000
#define ADDR_VAR_VMCS 0x7000
#define ADDR_VAR_VMEXIT_CODE 0x9000
#define ADDR_VAR_USER_CODE 0x9100
#define ADDR_VAR_USER_CODE2 0x9120

#define SEL_LDT (1 << 3)
#define SEL_CS16 (2 << 3)
#define SEL_DS16 (3 << 3)
#define SEL_CS16_CPL3 ((4 << 3) + 3)
#define SEL_DS16_CPL3 ((5 << 3) + 3)
#define SEL_CS32 (6 << 3)
#define SEL_DS32 (7 << 3)
#define SEL_CS32_CPL3 ((8 << 3) + 3)
#define SEL_DS32_CPL3 ((9 << 3) + 3)
#define SEL_CS64 (10 << 3)
#define SEL_DS64 (11 << 3)
#define SEL_CS64_CPL3 ((12 << 3) + 3)
#define SEL_DS64_CPL3 ((13 << 3) + 3)
#define SEL_CGATE16 (14 << 3)
#define SEL_TGATE16 (15 << 3)
#define SEL_CGATE32 (16 << 3)
#define SEL_TGATE32 (17 << 3)
#define SEL_CGATE64 (18 << 3)
#define SEL_CGATE64_HI (19 << 3)
#define SEL_TSS16 (20 << 3)
#define SEL_TSS16_2 (21 << 3)
#define SEL_TSS16_CPL3 ((22 << 3) + 3)
#define SEL_TSS32 (23 << 3)
#define SEL_TSS32_2 (24 << 3)
#define SEL_TSS32_CPL3 ((25 << 3) + 3)
#define SEL_TSS32_VM86 (26 << 3)
#define SEL_TSS64 (27 << 3)
#define SEL_TSS64_HI (28 << 3)
#define SEL_TSS64_CPL3 ((29 << 3) + 3)
#define SEL_TSS64_CPL3_HI (30 << 3)

#define MSR_IA32_FEATURE_CONTROL 0x3a
#define MSR_IA32_VMX_BASIC 0x480
#define MSR_IA32_SMBASE 0x9e
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176
#define MSR_IA32_STAR 0xC0000081
#define MSR_IA32_LSTAR 0xC0000082
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x48B

#define NEXT_INSN $0xbadc0de
#define PREFIX_SIZE 0xba1d
#define ARM64_ADDR_EXIT 0xdddd0000
#define ARM64_ADDR_UEXIT (ARM64_ADDR_EXIT + 256)
#define ARM64_ADDR_USER_CODE 0xeeee0000
#define ARM64_ADDR_EXECUTOR_CODE 0xeeee8000
#define ARM64_ADDR_SCRATCH_CODE 0xeeef0000
#define ARM64_ADDR_EL1_STACK_BOTTOM 0xffff1000
const char kvm_asm16_cpl3[] =
    "\x0f\x20\xc0\x66\x83\xc8\x01\x0f\x22\xc0\xb8\xa0\x00\x0f\x00\xd8\xb8\x2b"
    "\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\xbc\x00\x01\xc7\x06\x00\x01\x1d\xba"
    "\xc7\x06\x02\x01\x23\x00\xc7\x06\x04\x01\x00\x01\xc7\x06\x06\x01\x2b\x00"
    "\xcb";
const char kvm_asm32_paged[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0";
const char kvm_asm32_vm86[] =
    "\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm32_paged_vm86[] =
    "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8"
    "\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm64_enable_long[] =
    "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00"
    "\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8";
const char kvm_asm64_init_vm[] =
    "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00"
    "\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc1\x3a\x00\x00\x00\x0f"
    "\x32\x48\x83\xc8\x05\x0f\x30\x0f\x20\xe0\x48\x0d\x00\x20\x00\x00\x0f\x22"
    "\xe0\x48\xc7\xc1\x80\x04\x00\x00\x0f\x32\x48\xc7\xc2\x00\x60\x00\x00\x89"
    "\x02\x48\xc7\xc2\x00\x70\x00\x00\x89\x02\x48\xc7\xc0\x00\x5f\x00\x00\xf3"
    "\x0f\xc7\x30\x48\xc7\xc0\x08\x5f\x00\x00\x66\x0f\xc7\x30\x0f\xc7\x30\x48"
    "\xc7\xc1\x81\x04\x00\x00\x0f\x32\x48\x83\xc8\x00\x48\x21\xd0\x48\xc7\xc2"
    "\x00\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x82\x04\x00\x00\x0f\x32\x48\x83"
    "\xc8\x00\x48\x21\xd0\x48\xc7\xc2\x02\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x1e\x40\x00\x00\x48\xc7\xc0\x81\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x83"
    "\x04\x00\x00\x0f\x32\x48\x0d\xff\x6f\x03\x00\x48\x21\xd0\x48\xc7\xc2\x0c"
    "\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x84\x04\x00\x00\x0f\x32\x48\x0d\xff"
    "\x17\x00\x00\x48\x21\xd0\x48\xc7\xc2\x12\x40\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc2\x04\x2c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x00\x28\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02"
    "\x0c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc0\x58\x00"
    "\x00\x00\x48\xc7\xc2\x00\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x0c\x00"
    "\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08"
    "\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x0c\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc0\xd8\x00\x00\x00\x48\xc7\xc2\x0c\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x02\x2c\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00"
    "\x4c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x6c"
    "\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x6c\x00"
    "\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00"
    "\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x6c\x00"
    "\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x6c\x00\x00\x48"
    "\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x06\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00"
    "\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00"
    "\x0f\x79\xd0\x48\xc7\xc2\x0a\x6c\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f"
    "\x79\xd0\x48\xc7\xc2\x0c\x6c\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79"
    "\xd0\x48\xc7\xc2\x0e\x6c\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0"
    "\x48\xc7\xc2\x14\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48"
    "\xc7\xc2\x16\x6c\x00\x00\x48\x8b\x04\x25\x10\x5f\x00\x00\x0f\x79\xd0\x48"
    "\xc7\xc2\x00\x00\x00\x00\x48\xc7\xc0\x01\x00\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc2\x02\x00\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x00\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02"
    "\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x20"
    "\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x20\x00"
    "\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x77\x02\x00\x00"
    "\x0f\x32\x48\xc1\xe2\x20\x48\x09\xd0\x48\xc7\xc2\x00\x2c\x00\x00\x48\x89"
    "\xc0\x0f\x79\xd0\x48\xc7\xc2\x04\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00"
    "\x0f\x79\xd0\x48\xc7\xc2\x0a\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f"
    "\x79\xd0\x48\xc7\xc2\x0e\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79"
    "\xd0\x48\xc7\xc2\x10\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0"
    "\x48\xc7\xc2\x16\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48"
    "\xc7\xc2\x14\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc2\x00\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2"
    "\x02\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x1c"
    "\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x20"
    "\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x20\x00"
    "\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x20\x00\x00"
    "\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x08\x00\x00\x48"
    "\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x08\x00\x00\x48\xc7"
    "\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x08\x00\x00\x48\xc7\xc0"
    "\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x08\x00\x00\x48\xc7\xc0\x58"
    "\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x08\x00\x00\x48\xc7\xc0\x58\x00"
    "\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x08\x00\x00\x48\xc7\xc0\x58\x00\x00"
    "\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x08\x00\x00\x48\xc7\xc0\x00\x00\x00\x00"
    "\x0f\x79\xd0\x48\xc7\xc2\x0e\x08\x00\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f"
    "\x79\xd0\x48\xc7\xc2\x12\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79"
    "\xd0\x48\xc7\xc2\x14\x68\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0"
    "\x48\xc7\xc2\x16\x68\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48"
    "\xc7\xc2\x18\x68\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc2\x00\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x02\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x04"
    "\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x48"
    "\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x48\x00"
    "\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x48\x00\x00"
    "\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x48\x00\x00\x48"
    "\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x48\x00\x00\x48\xc7"
    "\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x48\x00\x00\x48\xc7\xc0"
    "\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x48\x00\x00\x48\xc7\xc0\xff"
    "\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x48\x00\x00\x48\xc7\xc0\x93\x40"
    "\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x48\x00\x00\x48\xc7\xc0\x9b\x20\x00"
    "\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00"
    "\x0f\x79\xd0\x48\xc7\xc2\x1a\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f"
    "\x79\xd0\x48\xc7\xc2\x1c\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79"
    "\xd0\x48\xc7\xc2\x1e\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0"
    "\x48\xc7\xc2\x20\x48\x00\x00\x48\xc7\xc0\x82\x00\x00\x00\x0f\x79\xd0\x48"
    "\xc7\xc2\x22\x48\x00\x00\x48\xc7\xc0\x8b\x00\x00\x00\x0f\x79\xd0\x48\xc7"
    "\xc2\x1c\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2"
    "\x1e\x68\x00\x00\x48\xc7\xc0\x00\x91\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20"
    "\x68\x00\x00\x48\xc7\xc0\x02\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x28"
    "\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x28\x00"
    "\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x28\x00\x00"
    "\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x28\x00\x00\x48"
    "\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x28\x00\x00\x48\xc7"
    "\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x68\x00\x00"
    "\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x68\x00\x00\x48\x89"
    "\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x68\x00\x00\x48\x89\xc0\x0f"
    "\x79\xd0\x48\xc7\xc0\x18\x5f\x00\x00\x48\x8b\x10\x48\xc7\xc0\x20\x5f\x00"
    "\x00\x48\x8b\x08\x48\x31\xc0\x0f\x78\xd0\x48\x31\xc8\x0f\x79\xd0\x0f\x01"
    "\xc2\x48\xc7\xc2\x00\x44\x00\x00\x0f\x78\xd0\xf4";
const char kvm_asm64_vm_exit[] =
    "\x48\xc7\xc3\x00\x44\x00\x00\x0f\x78\xda\x48\xc7\xc3\x02\x44\x00\x00\x0f"
    "\x78\xd9\x48\xc7\xc0\x00\x64\x00\x00\x0f\x78\xc0\x48\xc7\xc3\x1e\x68\x00"
    "\x00\x0f\x78\xdb\xf4";
const char kvm_asm64_cpl3[] =
    "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00"
    "\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc0\x6b\x00\x00\x00\x8e"
    "\xd8\x8e\xc0\x8e\xe0\x8e\xe8\x48\xc7\xc4\x80\x0f\x00\x00\x48\xc7\x04\x24"
    "\x1d\xba\x00\x00\x48\xc7\x44\x24\x04\x63\x00\x00\x00\x48\xc7\x44\x24\x08"
    "\x80\x0f\x00\x00\x48\xc7\x44\x24\x0c\x6b\x00\x00\x00\xcb";

#define KVM_SMI _IO(KVMIO, 0xb7)

#define CR0_PE 1
#define CR0_MP (1 << 1)
#define CR0_EM (1 << 2)
#define CR0_TS (1 << 3)
#define CR0_ET (1 << 4)
#define CR0_NE (1 << 5)
#define CR0_WP (1 << 16)
#define CR0_AM (1 << 18)
#define CR0_NW (1 << 29)
#define CR0_CD (1 << 30)
#define CR0_PG (1 << 31)

#define CR4_VME 1
#define CR4_PVI (1 << 1)
#define CR4_TSD (1 << 2)
#define CR4_DE (1 << 3)
#define CR4_PSE (1 << 4)
#define CR4_PAE (1 << 5)
#define CR4_MCE (1 << 6)
#define CR4_PGE (1 << 7)
#define CR4_PCE (1 << 8)
#define CR4_OSFXSR (1 << 8)
#define CR4_OSXMMEXCPT (1 << 10)
#define CR4_UMIP (1 << 11)
#define CR4_VMXE (1 << 13)
#define CR4_SMXE (1 << 14)
#define CR4_FSGSBASE (1 << 16)
#define CR4_PCIDE (1 << 17)
#define CR4_OSXSAVE (1 << 18)
#define CR4_SMEP (1 << 20)
#define CR4_SMAP (1 << 21)
#define CR4_PKE (1 << 22)

#define EFER_SCE 1
#define EFER_LME (1 << 8)
#define EFER_LMA (1 << 10)
#define EFER_NXE (1 << 11)
#define EFER_SVME (1 << 12)
#define EFER_LMSLE (1 << 13)
#define EFER_FFXSR (1 << 14)
#define EFER_TCE (1 << 15)
#define PDE32_PRESENT 1
#define PDE32_RW (1 << 1)
#define PDE32_USER (1 << 2)
#define PDE32_PS (1 << 7)
#define PDE64_PRESENT 1
#define PDE64_RW (1 << 1)
#define PDE64_USER (1 << 2)
#define PDE64_ACCESSED (1 << 5)
#define PDE64_DIRTY (1 << 6)
#define PDE64_PS (1 << 7)
#define PDE64_G (1 << 8)

struct tss16 {
  uint16_t prev;
  uint16_t sp0;
  uint16_t ss0;
  uint16_t sp1;
  uint16_t ss1;
  uint16_t sp2;
  uint16_t ss2;
  uint16_t ip;
  uint16_t flags;
  uint16_t ax;
  uint16_t cx;
  uint16_t dx;
  uint16_t bx;
  uint16_t sp;
  uint16_t bp;
  uint16_t si;
  uint16_t di;
  uint16_t es;
  uint16_t cs;
  uint16_t ss;
  uint16_t ds;
  uint16_t ldt;
} __attribute__((packed));

struct tss32 {
  uint16_t prev, prevh;
  uint32_t sp0;
  uint16_t ss0, ss0h;
  uint32_t sp1;
  uint16_t ss1, ss1h;
  uint32_t sp2;
  uint16_t ss2, ss2h;
  uint32_t cr3;
  uint32_t ip;
  uint32_t flags;
  uint32_t ax;
  uint32_t cx;
  uint32_t dx;
  uint32_t bx;
  uint32_t sp;
  uint32_t bp;
  uint32_t si;
  uint32_t di;
  uint16_t es, esh;
  uint16_t cs, csh;
  uint16_t ss, ssh;
  uint16_t ds, dsh;
  uint16_t fs, fsh;
  uint16_t gs, gsh;
  uint16_t ldt, ldth;
  uint16_t trace;
  uint16_t io_bitmap;
} __attribute__((packed));

struct tss64 {
  uint32_t reserved0;
  uint64_t rsp[3];
  uint64_t reserved1;
  uint64_t ist[7];
  uint64_t reserved2;
  uint32_t reserved3;
  uint32_t io_bitmap;
} __attribute__((packed));

static void fill_segment_descriptor(uint64_t* dt, uint64_t* lt,
                                    struct kvm_segment* seg)
{
  uint16_t index = seg->selector >> 3;
  uint64_t limit = seg->g ? seg->limit >> 12 : seg->limit;
  uint64_t sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 |
                (uint64_t)seg->type << 40 | (uint64_t)seg->s << 44 |
                (uint64_t)seg->dpl << 45 | (uint64_t)seg->present << 47 |
                (limit & 0xf0000ULL) << 48 | (uint64_t)seg->avl << 52 |
                (uint64_t)seg->l << 53 | (uint64_t)seg->db << 54 |
                (uint64_t)seg->g << 55 | (seg->base & 0xff000000ULL) << 56;
  dt[index] = sd;
  lt[index] = sd;
}

static void fill_segment_descriptor_dword(uint64_t* dt, uint64_t* lt,
                                          struct kvm_segment* seg)
{
  fill_segment_descriptor(dt, lt, seg);
  uint16_t index = seg->selector >> 3;
  dt[index + 1] = 0;
  lt[index + 1] = 0;
}

static void setup_syscall_msrs(int cpufd, uint16_t sel_cs, uint16_t sel_cs_cpl3)
{
  char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)];
  memset(buf, 0, sizeof(buf));
  struct kvm_msrs* msrs = (struct kvm_msrs*)buf;
  struct kvm_msr_entry* entries = msrs->entries;
  msrs->nmsrs = 5;
  entries[0].index = MSR_IA32_SYSENTER_CS;
  entries[0].data = sel_cs;
  entries[1].index = MSR_IA32_SYSENTER_ESP;
  entries[1].data = ADDR_STACK0;
  entries[2].index = MSR_IA32_SYSENTER_EIP;
  entries[2].data = ADDR_VAR_SYSEXIT;
  entries[3].index = MSR_IA32_STAR;
  entries[3].data = ((uint64_t)sel_cs << 32) | ((uint64_t)sel_cs_cpl3 << 48);
  entries[4].index = MSR_IA32_LSTAR;
  entries[4].data = ADDR_VAR_SYSRET;
  ioctl(cpufd, KVM_SET_MSRS, msrs);
}

static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem,
                            uintptr_t guest_mem)
{
  sregs->idt.base = guest_mem + ADDR_VAR_IDT;
  sregs->idt.limit = 0x1ff;
  uint64_t* idt = (uint64_t*)(host_mem + sregs->idt.base);
  for (int i = 0; i < 32; i++) {
    struct kvm_segment gate;
    gate.selector = i << 3;
    switch (i % 6) {
    case 0:
      gate.type = 6;
      gate.base = SEL_CS16;
      break;
    case 1:
      gate.type = 7;
      gate.base = SEL_CS16;
      break;
    case 2:
      gate.type = 3;
      gate.base = SEL_TGATE16;
      break;
    case 3:
      gate.type = 14;
      gate.base = SEL_CS32;
      break;
    case 4:
      gate.type = 15;
      gate.base = SEL_CS32;
      break;
    case 5:
      gate.type = 11;
      gate.base = SEL_TGATE32;
      break;
    }
    gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
    gate.present = 1;
    gate.dpl = 0;
    gate.s = 0;
    gate.g = 0;
    gate.db = 0;
    gate.l = 0;
    gate.avl = 0;
    fill_segment_descriptor(idt, idt, &gate);
  }
}

static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem,
                            uintptr_t guest_mem)
{
  sregs->idt.base = guest_mem + ADDR_VAR_IDT;
  sregs->idt.limit = 0x1ff;
  uint64_t* idt = (uint64_t*)(host_mem + sregs->idt.base);
  for (int i = 0; i < 32; i++) {
    struct kvm_segment gate;
    gate.selector = (i * 2) << 3;
    gate.type = (i & 1) ? 14 : 15;
    gate.base = SEL_CS64;
    gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
    gate.present = 1;
    gate.dpl = 0;
    gate.s = 0;
    gate.g = 0;
    gate.db = 0;
    gate.l = 0;
    gate.avl = 0;
    fill_segment_descriptor_dword(idt, idt, &gate);
  }
}

struct kvm_text {
  uintptr_t typ;
  const void* text;
  uintptr_t size;
};

struct kvm_opt {
  uint64_t typ;
  uint64_t val;
};

#define KVM_SETUP_PAGING (1 << 0)
#define KVM_SETUP_PAE (1 << 1)
#define KVM_SETUP_PROTECTED (1 << 2)
#define KVM_SETUP_CPL3 (1 << 3)
#define KVM_SETUP_VIRT86 (1 << 4)
#define KVM_SETUP_SMM (1 << 5)
#define KVM_SETUP_VM (1 << 6)
static volatile long syz_kvm_setup_cpu(volatile long a0, volatile long a1,
                                       volatile long a2, volatile long a3,
                                       volatile long a4, volatile long a5,
                                       volatile long a6, volatile long a7)
{
  const int vmfd = a0;
  const int cpufd = a1;
  char* const host_mem = (char*)a2;
  const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
  const uintptr_t text_count = a4;
  const uintptr_t flags = a5;
  const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
  uintptr_t opt_count = a7;
  const uintptr_t page_size = 4 << 10;
  const uintptr_t ioapic_page = 10;
  const uintptr_t guest_mem_size = 24 * page_size;
  const uintptr_t guest_mem = 0;
  (void)text_count;
  int text_type = text_array_ptr[0].typ;
  const void* text = text_array_ptr[0].text;
  uintptr_t text_size = text_array_ptr[0].size;
  for (uintptr_t i = 0; i < guest_mem_size / page_size; i++) {
    struct kvm_userspace_memory_region memreg;
    memreg.slot = i;
    memreg.flags = 0;
    memreg.guest_phys_addr = guest_mem + i * page_size;
    if (i == ioapic_page)
      memreg.guest_phys_addr = 0xfec00000;
    memreg.memory_size = page_size;
    memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
    ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
  }
  struct kvm_userspace_memory_region memreg;
  memreg.slot = 1 + (1 << 16);
  memreg.flags = 0;
  memreg.guest_phys_addr = 0x30000;
  memreg.memory_size = 64 << 10;
  memreg.userspace_addr = (uintptr_t)host_mem;
  ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
  struct kvm_sregs sregs;
  if (ioctl(cpufd, KVM_GET_SREGS, &sregs))
    return -1;
  struct kvm_regs regs;
  memset(&regs, 0, sizeof(regs));
  regs.rip = guest_mem + ADDR_TEXT;
  regs.rsp = ADDR_STACK0;
  sregs.gdt.base = guest_mem + ADDR_GDT;
  sregs.gdt.limit = 256 * sizeof(uint64_t) - 1;
  uint64_t* gdt = (uint64_t*)(host_mem + sregs.gdt.base);
  struct kvm_segment seg_ldt;
  memset(&seg_ldt, 0, sizeof(seg_ldt));
  seg_ldt.selector = SEL_LDT;
  seg_ldt.type = 2;
  seg_ldt.base = guest_mem + ADDR_LDT;
  seg_ldt.limit = 256 * sizeof(uint64_t) - 1;
  seg_ldt.present = 1;
  seg_ldt.dpl = 0;
  seg_ldt.s = 0;
  seg_ldt.g = 0;
  seg_ldt.db = 1;
  seg_ldt.l = 0;
  sregs.ldt = seg_ldt;
  uint64_t* ldt = (uint64_t*)(host_mem + sregs.ldt.base);
  struct kvm_segment seg_cs16;
  memset(&seg_cs16, 0, sizeof(seg_cs16));
  seg_cs16.selector = SEL_CS16;
  seg_cs16.type = 11;
  seg_cs16.base = 0;
  seg_cs16.limit = 0xfffff;
  seg_cs16.present = 1;
  seg_cs16.dpl = 0;
  seg_cs16.s = 1;
  seg_cs16.g = 0;
  seg_cs16.db = 0;
  seg_cs16.l = 0;
  struct kvm_segment seg_ds16 = seg_cs16;
  seg_ds16.selector = SEL_DS16;
  seg_ds16.type = 3;
  struct kvm_segment seg_cs16_cpl3 = seg_cs16;
  seg_cs16_cpl3.selector = SEL_CS16_CPL3;
  seg_cs16_cpl3.dpl = 3;
  struct kvm_segment seg_ds16_cpl3 = seg_ds16;
  seg_ds16_cpl3.selector = SEL_DS16_CPL3;
  seg_ds16_cpl3.dpl = 3;
  struct kvm_segment seg_cs32 = seg_cs16;
  seg_cs32.selector = SEL_CS32;
  seg_cs32.db = 1;
  struct kvm_segment seg_ds32 = seg_ds16;
  seg_ds32.selector = SEL_DS32;
  seg_ds32.db = 1;
  struct kvm_segment seg_cs32_cpl3 = seg_cs32;
  seg_cs32_cpl3.selector = SEL_CS32_CPL3;
  seg_cs32_cpl3.dpl = 3;
  struct kvm_segment seg_ds32_cpl3 = seg_ds32;
  seg_ds32_cpl3.selector = SEL_DS32_CPL3;
  seg_ds32_cpl3.dpl = 3;
  struct kvm_segment seg_cs64 = seg_cs16;
  seg_cs64.selector = SEL_CS64;
  seg_cs64.l = 1;
  struct kvm_segment seg_ds64 = seg_ds32;
  seg_ds64.selector = SEL_DS64;
  struct kvm_segment seg_cs64_cpl3 = seg_cs64;
  seg_cs64_cpl3.selector = SEL_CS64_CPL3;
  seg_cs64_cpl3.dpl = 3;
  struct kvm_segment seg_ds64_cpl3 = seg_ds64;
  seg_ds64_cpl3.selector = SEL_DS64_CPL3;
  seg_ds64_cpl3.dpl = 3;
  struct kvm_segment seg_tss32;
  memset(&seg_tss32, 0, sizeof(seg_tss32));
  seg_tss32.selector = SEL_TSS32;
  seg_tss32.type = 9;
  seg_tss32.base = ADDR_VAR_TSS32;
  seg_tss32.limit = 0x1ff;
  seg_tss32.present = 1;
  seg_tss32.dpl = 0;
  seg_tss32.s = 0;
  seg_tss32.g = 0;
  seg_tss32.db = 0;
  seg_tss32.l = 0;
  struct kvm_segment seg_tss32_2 = seg_tss32;
  seg_tss32_2.selector = SEL_TSS32_2;
  seg_tss32_2.base = ADDR_VAR_TSS32_2;
  struct kvm_segment seg_tss32_cpl3 = seg_tss32;
  seg_tss32_cpl3.selector = SEL_TSS32_CPL3;
  seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3;
  struct kvm_segment seg_tss32_vm86 = seg_tss32;
  seg_tss32_vm86.selector = SEL_TSS32_VM86;
  seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86;
  struct kvm_segment seg_tss16 = seg_tss32;
  seg_tss16.selector = SEL_TSS16;
  seg_tss16.base = ADDR_VAR_TSS16;
  seg_tss16.limit = 0xff;
  seg_tss16.type = 1;
  struct kvm_segment seg_tss16_2 = seg_tss16;
  seg_tss16_2.selector = SEL_TSS16_2;
  seg_tss16_2.base = ADDR_VAR_TSS16_2;
  seg_tss16_2.dpl = 0;
  struct kvm_segment seg_tss16_cpl3 = seg_tss16;
  seg_tss16_cpl3.selector = SEL_TSS16_CPL3;
  seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3;
  seg_tss16_cpl3.dpl = 3;
  struct kvm_segment seg_tss64 = seg_tss32;
  seg_tss64.selector = SEL_TSS64;
  seg_tss64.base = ADDR_VAR_TSS64;
  seg_tss64.limit = 0x1ff;
  struct kvm_segment seg_tss64_cpl3 = seg_tss64;
  seg_tss64_cpl3.selector = SEL_TSS64_CPL3;
  seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3;
  seg_tss64_cpl3.dpl = 3;
  struct kvm_segment seg_cgate16;
  memset(&seg_cgate16, 0, sizeof(seg_cgate16));
  seg_cgate16.selector = SEL_CGATE16;
  seg_cgate16.type = 4;
  seg_cgate16.base = SEL_CS16 | (2 << 16);
  seg_cgate16.limit = ADDR_VAR_USER_CODE2;
  seg_cgate16.present = 1;
  seg_cgate16.dpl = 0;
  seg_cgate16.s = 0;
  seg_cgate16.g = 0;
  seg_cgate16.db = 0;
  seg_cgate16.l = 0;
  seg_cgate16.avl = 0;
  struct kvm_segment seg_tgate16 = seg_cgate16;
  seg_tgate16.selector = SEL_TGATE16;
  seg_tgate16.type = 3;
  seg_cgate16.base = SEL_TSS16_2;
  seg_tgate16.limit = 0;
  struct kvm_segment seg_cgate32 = seg_cgate16;
  seg_cgate32.selector = SEL_CGATE32;
  seg_cgate32.type = 12;
  seg_cgate32.base = SEL_CS32 | (2 << 16);
  struct kvm_segment seg_tgate32 = seg_cgate32;
  seg_tgate32.selector = SEL_TGATE32;
  seg_tgate32.type = 11;
  seg_tgate32.base = SEL_TSS32_2;
  seg_tgate32.limit = 0;
  struct kvm_segment seg_cgate64 = seg_cgate16;
  seg_cgate64.selector = SEL_CGATE64;
  seg_cgate64.type = 12;
  seg_cgate64.base = SEL_CS64;
  int kvmfd = open("/dev/kvm", O_RDWR);
  char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)];
  memset(buf, 0, sizeof(buf));
  struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf;
  cpuid->nent = 128;
  ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid);
  ioctl(cpufd, KVM_SET_CPUID2, cpuid);
  close(kvmfd);
  const char* text_prefix = 0;
  int text_prefix_size = 0;
  char* host_text = host_mem + ADDR_TEXT;
  if (text_type == 8) {
    if (flags & KVM_SETUP_SMM) {
      if (flags & KVM_SETUP_PROTECTED) {
        sregs.cs = seg_cs16;
        sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
        sregs.cr0 |= CR0_PE;
      } else {
        sregs.cs.selector = 0;
        sregs.cs.base = 0;
      }
      *(host_mem + ADDR_TEXT) = 0xf4;
      host_text = host_mem + 0x8000;
      ioctl(cpufd, KVM_SMI, 0);
    } else if (flags & KVM_SETUP_VIRT86) {
      sregs.cs = seg_cs32;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
      sregs.cr0 |= CR0_PE;
      sregs.efer |= EFER_SCE;
      setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
      setup_32bit_idt(&sregs, host_mem, guest_mem);
      if (flags & KVM_SETUP_PAGING) {
        uint64_t pd_addr = guest_mem + ADDR_PD;
        uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
        pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS;
        sregs.cr3 = pd_addr;
        sregs.cr4 |= CR4_PSE;
        text_prefix = kvm_asm32_paged_vm86;
        text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1;
      } else {
        text_prefix = kvm_asm32_vm86;
        text_prefix_size = sizeof(kvm_asm32_vm86) - 1;
      }
    } else {
      sregs.cs.selector = 0;
      sregs.cs.base = 0;
    }
  } else if (text_type == 16) {
    if (flags & KVM_SETUP_CPL3) {
      sregs.cs = seg_cs16;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
      text_prefix = kvm_asm16_cpl3;
      text_prefix_size = sizeof(kvm_asm16_cpl3) - 1;
    } else {
      sregs.cr0 |= CR0_PE;
      sregs.cs = seg_cs16;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
    }
  } else if (text_type == 32) {
    sregs.cr0 |= CR0_PE;
    sregs.efer |= EFER_SCE;
    setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
    setup_32bit_idt(&sregs, host_mem, guest_mem);
    if (flags & KVM_SETUP_SMM) {
      sregs.cs = seg_cs32;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
      *(host_mem + ADDR_TEXT) = 0xf4;
      host_text = host_mem + 0x8000;
      ioctl(cpufd, KVM_SMI, 0);
    } else if (flags & KVM_SETUP_PAGING) {
      sregs.cs = seg_cs32;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
      uint64_t pd_addr = guest_mem + ADDR_PD;
      uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
      pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS;
      sregs.cr3 = pd_addr;
      sregs.cr4 |= CR4_PSE;
      text_prefix = kvm_asm32_paged;
      text_prefix_size = sizeof(kvm_asm32_paged) - 1;
    } else if (flags & KVM_SETUP_CPL3) {
      sregs.cs = seg_cs32_cpl3;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3;
    } else {
      sregs.cs = seg_cs32;
      sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
    }
  } else {
    sregs.efer |= EFER_LME | EFER_SCE;
    sregs.cr0 |= CR0_PE;
    setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3);
    setup_64bit_idt(&sregs, host_mem, guest_mem);
    sregs.cs = seg_cs32;
    sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
    uint64_t pml4_addr = guest_mem + ADDR_PML4;
    uint64_t* pml4 = (uint64_t*)(host_mem + ADDR_PML4);
    uint64_t pdpt_addr = guest_mem + ADDR_PDP;
    uint64_t* pdpt = (uint64_t*)(host_mem + ADDR_PDP);
    uint64_t pd_addr = guest_mem + ADDR_PD;
    uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
    pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr;
    pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr;
    pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS;
    sregs.cr3 = pml4_addr;
    sregs.cr4 |= CR4_PAE;
    if (flags & KVM_SETUP_VM) {
      sregs.cr0 |= CR0_NE;
      *((uint64_t*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON;
      *((uint64_t*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS;
      memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit,
             sizeof(kvm_asm64_vm_exit) - 1);
      *((uint64_t*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE;
      text_prefix = kvm_asm64_init_vm;
      text_prefix_size = sizeof(kvm_asm64_init_vm) - 1;
    } else if (flags & KVM_SETUP_CPL3) {
      text_prefix = kvm_asm64_cpl3;
      text_prefix_size = sizeof(kvm_asm64_cpl3) - 1;
    } else {
      text_prefix = kvm_asm64_enable_long;
      text_prefix_size = sizeof(kvm_asm64_enable_long) - 1;
    }
  }
  struct tss16 tss16;
  memset(&tss16, 0, sizeof(tss16));
  tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
  tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
  tss16.ip = ADDR_VAR_USER_CODE2;
  tss16.flags = (1 << 1);
  tss16.cs = SEL_CS16;
  tss16.es = tss16.ds = tss16.ss = SEL_DS16;
  tss16.ldt = SEL_LDT;
  struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base);
  memcpy(tss16_addr, &tss16, sizeof(tss16));
  memset(&tss16, 0, sizeof(tss16));
  tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
  tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
  tss16.ip = ADDR_VAR_USER_CODE2;
  tss16.flags = (1 << 1);
  tss16.cs = SEL_CS16_CPL3;
  tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3;
  tss16.ldt = SEL_LDT;
  struct tss16* tss16_cpl3_addr =
      (struct tss16*)(host_mem + seg_tss16_cpl3.base);
  memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16));
  struct tss32 tss32;
  memset(&tss32, 0, sizeof(tss32));
  tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
  tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
  tss32.ip = ADDR_VAR_USER_CODE;
  tss32.flags = (1 << 1) | (1 << 17);
  tss32.ldt = SEL_LDT;
  tss32.cr3 = sregs.cr3;
  tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
  struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base);
  memcpy(tss32_addr, &tss32, sizeof(tss32));
  memset(&tss32, 0, sizeof(tss32));
  tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
  tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
  tss32.ip = ADDR_VAR_USER_CODE;
  tss32.flags = (1 << 1);
  tss32.cr3 = sregs.cr3;
  tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32;
  tss32.cs = SEL_CS32;
  tss32.ldt = SEL_LDT;
  tss32.cr3 = sregs.cr3;
  tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
  struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base);
  memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32));
  struct tss64 tss64;
  memset(&tss64, 0, sizeof(tss64));
  tss64.rsp[0] = ADDR_STACK0;
  tss64.rsp[1] = ADDR_STACK0;
  tss64.rsp[2] = ADDR_STACK0;
  tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
  struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base);
  memcpy(tss64_addr, &tss64, sizeof(tss64));
  memset(&tss64, 0, sizeof(tss64));
  tss64.rsp[0] = ADDR_STACK0;
  tss64.rsp[1] = ADDR_STACK0;
  tss64.rsp[2] = ADDR_STACK0;
  tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
  struct tss64* tss64_cpl3_addr =
      (struct tss64*)(host_mem + seg_tss64_cpl3.base);
  memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64));
  if (text_size > 1000)
    text_size = 1000;
  if (text_prefix) {
    memcpy(host_text, text_prefix, text_prefix_size);
    void* patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4);
    if (patch)
      *((uint32_t*)patch) =
          guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6;
    uint16_t magic = PREFIX_SIZE;
    patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic));
    if (patch)
      *((uint16_t*)patch) = guest_mem + ADDR_TEXT + text_prefix_size;
  }
  memcpy((void*)(host_text + text_prefix_size), text, text_size);
  *(host_text + text_prefix_size + text_size) = 0xf4;
  memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size);
  *(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4;
  *(host_mem + ADDR_VAR_HLT) = 0xf4;
  memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3);
  memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3);
  *(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0;
  *(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0;
  if (opt_count > 2)
    opt_count = 2;
  for (uintptr_t i = 0; i < opt_count; i++) {
    uint64_t typ = opt_array_ptr[i].typ;
    uint64_t val = opt_array_ptr[i].val;
    switch (typ % 9) {
    case 0:
      sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM |
                          CR0_NW | CR0_CD);
      break;
    case 1:
      sregs.cr4 ^=
          val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE |
                 CR4_PCE | CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE |
                 CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE | CR4_OSXSAVE | CR4_SMEP |
                 CR4_SMAP | CR4_PKE);
      break;
    case 2:
      sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE |
                           EFER_FFXSR | EFER_TCE);
      break;
    case 3:
      val &=
          ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) |
           (1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21));
      regs.rflags ^= val;
      tss16_addr->flags ^= val;
      tss16_cpl3_addr->flags ^= val;
      tss32_addr->flags ^= val;
      tss32_cpl3_addr->flags ^= val;
      break;
    case 4:
      seg_cs16.type = val & 0xf;
      seg_cs32.type = val & 0xf;
      seg_cs64.type = val & 0xf;
      break;
    case 5:
      seg_cs16_cpl3.type = val & 0xf;
      seg_cs32_cpl3.type = val & 0xf;
      seg_cs64_cpl3.type = val & 0xf;
      break;
    case 6:
      seg_ds16.type = val & 0xf;
      seg_ds32.type = val & 0xf;
      seg_ds64.type = val & 0xf;
      break;
    case 7:
      seg_ds16_cpl3.type = val & 0xf;
      seg_ds32_cpl3.type = val & 0xf;
      seg_ds64_cpl3.type = val & 0xf;
      break;
    case 8:
      *(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff);
      *(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16);
      break;
    default:
      exit(1);
    }
  }
  regs.rflags |= 2;
  fill_segment_descriptor(gdt, ldt, &seg_ldt);
  fill_segment_descriptor(gdt, ldt, &seg_cs16);
  fill_segment_descriptor(gdt, ldt, &seg_ds16);
  fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_cs32);
  fill_segment_descriptor(gdt, ldt, &seg_ds32);
  fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_cs64);
  fill_segment_descriptor(gdt, ldt, &seg_ds64);
  fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_tss32);
  fill_segment_descriptor(gdt, ldt, &seg_tss32_2);
  fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86);
  fill_segment_descriptor(gdt, ldt, &seg_tss16);
  fill_segment_descriptor(gdt, ldt, &seg_tss16_2);
  fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3);
  fill_segment_descriptor_dword(gdt, ldt, &seg_tss64);
  fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3);
  fill_segment_descriptor(gdt, ldt, &seg_cgate16);
  fill_segment_descriptor(gdt, ldt, &seg_tgate16);
  fill_segment_descriptor(gdt, ldt, &seg_cgate32);
  fill_segment_descriptor(gdt, ldt, &seg_tgate32);
  fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64);
  if (ioctl(cpufd, KVM_SET_SREGS, &sregs))
    return -1;
  if (ioctl(cpufd, KVM_SET_REGS, &regs))
    return -1;
  return 0;
}

static void sandbox_common_mount_tmpfs(void)
{
  write_file("/proc/sys/fs/mount-max", "100000");
  if (mkdir("./syz-tmp", 0777))
    exit(1);
  if (mount("", "./syz-tmp", "tmpfs", 0, NULL))
    exit(1);
  if (mkdir("./syz-tmp/newroot", 0777))
    exit(1);
  if (mkdir("./syz-tmp/newroot/dev", 0700))
    exit(1);
  unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE;
  if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL))
    exit(1);
  if (mkdir("./syz-tmp/newroot/proc", 0700))
    exit(1);
  if (mount("syz-proc", "./syz-tmp/newroot/proc", "proc", 0, NULL))
    exit(1);
  if (mkdir("./syz-tmp/newroot/selinux", 0700))
    exit(1);
  const char* selinux_path = "./syz-tmp/newroot/selinux";
  if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) {
    if (errno != ENOENT)
      exit(1);
    if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) &&
        errno != ENOENT)
      exit(1);
  }
  if (mkdir("./syz-tmp/newroot/sys", 0700))
    exit(1);
  if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL))
    exit(1);
  if (mkdir("./syz-tmp/pivot", 0777))
    exit(1);
  if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) {
    if (chdir("./syz-tmp"))
      exit(1);
  } else {
    if (chdir("/"))
      exit(1);
    if (umount2("./pivot", MNT_DETACH))
      exit(1);
  }
  if (chroot("./newroot"))
    exit(1);
  if (chdir("/"))
    exit(1);
}

static void setup_common()
{
  if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) {
  }
}

static void setup_binderfs()
{
  if (mkdir("/dev/binderfs", 0777)) {
  }
  if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) {
  }
}

static void loop();

static void sandbox_common()
{
  prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
  setsid();
  struct rlimit rlim;
  rlim.rlim_cur = rlim.rlim_max = (200 << 20);
  setrlimit(RLIMIT_AS, &rlim);
  rlim.rlim_cur = rlim.rlim_max = 32 << 20;
  setrlimit(RLIMIT_MEMLOCK, &rlim);
  rlim.rlim_cur = rlim.rlim_max = 136 << 20;
  setrlimit(RLIMIT_FSIZE, &rlim);
  rlim.rlim_cur = rlim.rlim_max = 1 << 20;
  setrlimit(RLIMIT_STACK, &rlim);
  rlim.rlim_cur = rlim.rlim_max = 128 << 20;
  setrlimit(RLIMIT_CORE, &rlim);
  rlim.rlim_cur = rlim.rlim_max = 256;
  setrlimit(RLIMIT_NOFILE, &rlim);
  if (unshare(CLONE_NEWNS)) {
  }
  if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) {
  }
  if (unshare(CLONE_NEWIPC)) {
  }
  if (unshare(0x02000000)) {
  }
  if (unshare(CLONE_NEWUTS)) {
  }
  if (unshare(CLONE_SYSVSEM)) {
  }
  typedef struct {
    const char* name;
    const char* value;
  } sysctl_t;
  static const sysctl_t sysctls[] = {
      {"/proc/sys/kernel/shmmax", "16777216"},
      {"/proc/sys/kernel/shmall", "536870912"},
      {"/proc/sys/kernel/shmmni", "1024"},
      {"/proc/sys/kernel/msgmax", "8192"},
      {"/proc/sys/kernel/msgmni", "1024"},
      {"/proc/sys/kernel/msgmnb", "1024"},
      {"/proc/sys/kernel/sem", "1024 1048576 500 1024"},
  };
  unsigned i;
  for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++)
    write_file(sysctls[i].name, sysctls[i].value);
}

static int wait_for_loop(int pid)
{
  if (pid < 0)
    exit(1);
  int status = 0;
  while (waitpid(-1, &status, __WALL) != pid) {
  }
  return WEXITSTATUS(status);
}

static void drop_caps(void)
{
  struct __user_cap_header_struct cap_hdr = {};
  struct __user_cap_data_struct cap_data[2] = {};
  cap_hdr.version = _LINUX_CAPABILITY_VERSION_3;
  cap_hdr.pid = getpid();
  if (syscall(SYS_capget, &cap_hdr, &cap_data))
    exit(1);
  const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE);
  cap_data[0].effective &= ~drop;
  cap_data[0].permitted &= ~drop;
  cap_data[0].inheritable &= ~drop;
  if (syscall(SYS_capset, &cap_hdr, &cap_data))
    exit(1);
}

static int do_sandbox_none(void)
{
  if (unshare(CLONE_NEWPID)) {
  }
  int pid = fork();
  if (pid != 0)
    return wait_for_loop(pid);
  setup_common();
  sandbox_common();
  drop_caps();
  if (unshare(CLONE_NEWNET)) {
  }
  write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535");
  sandbox_common_mount_tmpfs();
  setup_binderfs();
  loop();
  exit(1);
}

static const char* setup_usb()
{
  if (chmod("/dev/raw-gadget", 0666))
    return "failed to chmod /dev/raw-gadget";
  return NULL;
}

uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff};

void loop(void)
{
  intptr_t res = 0;
  if (write(1, "executing program\n", sizeof("executing program\n") - 1)) {
  }
  syscall(__NR_ioctl, /*fd=*/-1, /*cmd=*/0xae01, /*type=*/0ul);
  syscall(__NR_ioctl, /*fd=*/-1, /*cmd=*/0xae60, 0);
  syscall(__NR_ioctl, /*fd=*/-1, /*cmd=*/0xae41, /*id=*/0ul);
  res = syscall(__NR_dup2, /*oldfd=*/-1, /*newfd=*/-1);
  if (res != -1)
    r[0] = res;
  NONFAILING(memcpy((void*)0x20000780, "ext4\000", 5));
  NONFAILING(memcpy((void*)0x20000240, "./file0\000", 8));
  NONFAILING(*(uint8_t*)0x20000080 = 0);
  NONFAILING(memcpy(
      (void*)0x20001a00,
      "\x78\x9c\xec\xdd\xcf\x6b\x1b\xd9\x1d\x00\xf0\xef\xc8\xb2\x1d\x3b\x69\xed"
      "\x42\xa1\x4d\x4e\x86\x42\x6b\x08\x91\xe3\xd4\x4d\x5a\xe8\x21\xa5\x87\x52"
      "\x68\x20\xd0\x9e\x9b\x08\x59\x31\xa9\x65\x2b\x58\x72\x88\x8d\xa1\x09\xa5"
      "\xd0\x4b\xa1\x2d\x3d\x14\xda\x4b\xce\xfd\x91\xde\x7a\xed\xee\x5e\x77\xff"
      "\x8b\x3d\x2c\x09\xd9\x5d\x27\xac\x97\x3d\x2c\x5e\x46\x1e\xd9\x72\x2c\x39"
      "\xb6\x63\x49\xde\xf5\xe7\x03\x63\xbd\x37\x33\xf2\x7b\x5f\xbd\xf9\xf1\x46"
      "\xf3\xd0\x04\x70\x6a\x4d\xa4\x7f\x72\x11\xe7\x23\xe2\x4f\x49\xc4\x58\x36"
      "\x3f\x89\x88\xc1\x46\x2a\x1f\x71\x7d\x6b\xbd\x8d\xa1\x88\x58\x5f\x2b\x25"
      "\xb1\xb9\xf9\xcb\x8f\x92\xc6\x3a\x2f\xd7\xd7\x4a\xd1\xf2\x9e\xd4\xd9\x2c"
      "\xf3\xed\x88\x78\xfb\xf7\x11\x17\x73\x7b\xcb\xad\xad\xac\xce\x17\x2b\x95"
      "\xf2\x52\x96\x9f\xaa\x2f\xdc\x9b\xaa\xad\xac\x5e\xba\xbb\x50\x9c\x2b\xcf"
      "\x95\x17\xaf\x4e\xcf\xcc\x5c\xb9\xf6\x83\x6b\x57\xdf\x28\xbc\xaf\xb7\x66"
      "\x3e\x79\x6f\xf5\xdc\xb3\x3f\xff\xec\x7b\xff\xb9\xfe\xd9\xef\xbe\xf5\xe4"
      "\x8f\xef\x24\x71\x3d\xce\x65\xcb\x5a\xe3\x38\x2e\x13\x31\x91\x7d\x26\x83"
      "\xe9\x47\xb8\xcb\x4f\x8f\xbb\xb0\x3e\x4b\xfa\x5d\x01\x8e\x24\xdd\x35\x07"
      "\xb6\xf6\xf2\x38\x1f\x63\x31\xd0\x48\x75\x30\xd2\xcb\x9a\x01\x00\xdd\xf2"
      "\xdb\x88\xd8\x04\x00\x4e\x99\xc4\xf9\x1f\x00\x4e\x99\xe6\xf7\x00\x2f\xd7"
      "\xd7\x4a\xd9\x74\xa1\xbf\xdf\x48\xf4\xd6\xf3\x9f\x44\xc4\x99\xad\xf8\x37"
      "\xb2\x69\x6b\x49\x3e\xbb\x67\x77\xa6\x71\x1f\x74\xf4\x65\xb2\xeb\xce\x48"
      "\x12\x11\xe3\xc7\x50\xfe\x44\x44\xfc\xe3\x7f\xbf\xfe\x57\x3a\x45\x97\xee"
      "\x43\x02\xb4\xf3\xf0\x51\x44\xdc\x1e\x9f\x68\x39\xfe\x67\xc7\x9f\x64\xcf"
      "\x98\x85\xc3\xba\xbc\xdf\xc2\xcd\xe1\xc6\xcb\xc4\x2b\xb3\x1d\xff\xa0\x77"
      "\xfe\x9f\xf6\x7f\x7e\xb8\xab\xff\x97\xed\x7f\xb9\xed\xfe\x4f\xb4\xe9\xff"
      "\x0c\xb7\xd9\x77\x8f\xe2\xf5\xfb\x7f\xee\xe9\x31\x14\xd3\x51\xda\xff\xfb"
      "\x71\x44\x6c\xec\xe9\xff\x6d\x0f\x5a\x1b\x1f\xc8\x72\x5f\x6b\xf4\xf9\x06"
      "\x93\x3b\x77\x2b\xe5\xcb\xd9\xe0\xb2\xc9\x18\x1c\x4e\xf3\xd3\x8d\x55\xdb"
      "\x8f\x82\x9a\x7c\xf1\xf9\x8b\x4e\xe5\xb7\xf6\xff\x3e\xfe\xcb\x6f\xfe\x99"
      "\x96\x9f\xbe\xee\xac\x91\x7b\x9a\x1f\xde\xfd\x9e\xd9\x62\xbd\xf8\xa6\x71"
      "\x37\x3d\x7f\x14\x71\x21\xdf\x2e\xfe\x64\xbb\xfd\x93\x0e\xfd\xdf\x9b\x07"
      "\x2c\xe3\xe7\x3f\xfa\xc3\xdf\x3b\x2d\x4b\xe3\x4f\xe3\x6d\x4e\x7b\xe3\xef"
      "\xae\xcd\xc7\x11\xdf\x6d\xdb\xfe\x3b\x6d\x99\xec\x3b\x3e\x71\xaa\xb1\x39"
      "\x4c\x35\x37\x8a\x36\xfe\xfb\xfe\xdf\x46\x77\x72\xbb\xc7\x57\xb5\xb6\x7f"
      "\x3a\xa5\xe5\x37\xaf\x05\x7a\x21\x6d\xff\xd1\xfd\xe3\x1f\x4f\x5a\xc7\x6b"
      "\xd6\x0e\x5f\xc6\xbb\x8f\xc7\xde\xea\xb4\xec\xf5\xf1\xb7\xdf\xfe\x87\x92"
      "\x5f\x35\xd2\x43\xd9\xbc\x07\xc5\x7a\x7d\x69\x3a\x62\x28\xf9\xc5\xde\xf9"
      "\x57\x76\xde\xdb\xcc\x37\xd7\x4f\xe3\x9f\xfc\x4e\xfb\xfd\x7f\xbf\xed\x3f"
      "\xbd\x26\xbc\x7d\xc0\xf8\xf3\xcf\x3e\xfc\xf7\xd1\xe3\xef\xae\x34\xfe\xd9"
      "\x43\xb5\xff\xe1\x13\x4f\x36\xe6\x07\x3a\x95\x7f\xb0\xf6\x9f\x69\xa4\x26"
      "\xb3\x39\x07\x39\xfe\xed\xd4\x22\xbf\x67\x4e\x6b\xe2\xa8\x9f\x1b\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c"
      "\x46\x2e\x22\xce\x45\x92\x2b\x6c\xa7\x73\xb9\x42\x61\xeb\x19\xde\xdf\x8c"
      "\xd1\x5c\xa5\x5a\xab\x5f\xbc\x53\x5d\x5e\x9c\x8d\xc6\xb3\xb2\xc7\x63\x30"
      "\xd7\xfc\xa9\xcb\xb1\x96\xdf\x43\x9d\xce\x7e\x0f\xbf\x99\xbf\xf2\x4a\xfe"
      "\xfb\x11\xf1\x8d\x88\xf8\xeb\xf0\x48\x23\x5f\x28\x55\x2b\xb3\xfd\x0e\x1e"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x67\x3b\x3c\xff"
      "\x3f\xf5\xc1\x70\xbf\x6b\x07\x00\x74\xcd\x99\x7e\x57\x00\x00\xe8\x39\xe7"
      "\x7f\x00\x38\x7d\x0e\x77\xfe\x1f\xe9\x5a\x3d\x00\x80\xde\x71\xfd\x0f\x00"
      "\xa7\xcf\x81\xcf\xff\xb7\xbb\x5b\x0f\x00\xa0\x77\x0e\x7d\xfd\x9f\xef\x4e"
      "\x3d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\xca"
      "\xba\x79\xe3\x46\x3a\x6d\x7e\xba\xbe\x56\x4a\xf3\xb3\xf7\x57\x96\xe7\xab"
      "\xf7\x2f\xcd\x96\x6b\xf3\x85\x85\xe5\x52\xa1\x54\x5d\xba\x57\x98\xab\x56"
      "\xe7\x2a\xe5\x42\xa9\xba\xd0\xf1\x1f\x3d\xdc\x7a\xa9\x54\xab\xf7\x66\x62"
      "\x71\xf9\xc1\x54\xbd\x5c\xab\x4f\xd5\x56\x56\x6f\x2d\x54\x97\x17\xeb\xb7"
      "\xee\x2e\x14\xe7\xca\xb7\xca\x83\x3d\x8b\x0c\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x0e\xae\xb6\xb2\x3a\x5f\xac\x54\xca\x4b\x12\xfb"
      "\x26\x46\x4e\x46\x35\x4e\x4c\x22\x1f\xf3\xc5\xca\x58\xdf\xab\xd1\xb9\xbd"
      "\xe2\x44\x54\xe3\x4b\x9c\x68\x3d\x4a\x8c\xf4\xef\x00\x05\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
      "\x00\x00\x00\x00\x00\x70\xc2\x7d\x11\x00\x00\xff\xff\x00\x6d\x23\x3c",
      1961));
  NONFAILING(syz_mount_image(
      /*fs=*/0x20000780, /*dir=*/0x20000240,
      /*flags=MS_LAZYTIME|MS_NOATIME|MS_DIRSYNC*/ 0x2000480,
      /*opts=*/0x20000080, /*chdir=*/1, /*size=*/0x7a9, /*img=*/0x20001a00));
  NONFAILING(memcpy((void*)0x200001c0, "cpuacct.usage_sys\000", 18));
  res = syscall(__NR_openat, /*fd=*/0xffffff9c, /*file=*/0x200001c0ul,
                /*flags=*/0x275aul, /*mode=*/0ul);
  if (res != -1)
    r[1] = res;
  NONFAILING(memcpy((void*)0x20000600, "/dev/vhost-vsock\000", 17));
  res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000600ul,
                /*flags=*/2ul, /*mode=*/0ul);
  if (res != -1)
    r[2] = res;
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0xaf01, /*arg=*/0ul);
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0x4008af20, /*arg=*/0ul);
  NONFAILING(*(uint32_t*)0x20000140 = 0);
  NONFAILING(*(uint32_t*)0x20000144 = 0);
  NONFAILING(*(uint64_t*)0x20000148 = 0);
  NONFAILING(*(uint64_t*)0x20000150 = 0x20000180);
  NONFAILING(*(uint64_t*)0x20000158 = 0);
  NONFAILING(*(uint64_t*)0x20000160 = 0);
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0x4028af11, /*arg=*/0x20000140ul);
  NONFAILING(*(uint32_t*)0x20000980 = 0);
  NONFAILING(*(uint32_t*)0x20000984 = 0);
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0x4008af03, /*arg=*/0x20000980ul);
  NONFAILING(*(uint32_t*)0x20000280 = 1);
  NONFAILING(*(uint32_t*)0x20000284 = 1);
  NONFAILING(*(uint64_t*)0x20000288 = 0);
  NONFAILING(*(uint64_t*)0x20000290 = 0x200000c0);
  NONFAILING(*(uint64_t*)0x20000298 = 0);
  NONFAILING(*(uint64_t*)0x200002a0 = 0);
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0x4028af11, /*arg=*/0x20000280ul);
  NONFAILING(*(uint32_t*)0x20000000 = 1);
  syscall(__NR_ioctl, /*fd=*/r[2], /*cmd=*/0x4004af61, /*arg=*/0x20000000ul);
  NONFAILING(memcpy((void*)0x20000040, "#! ", 3));
  NONFAILING(memcpy((void*)0x20000043, "./file0", 7));
  NONFAILING(*(uint8_t*)0x2000004a = 0xa);
  syscall(__NR_write, /*fd=*/r[1], /*data=*/0x20000040ul, /*len=*/0xbul);
  syscall(__NR_mmap, /*addr=*/0x20000000ul, /*len=*/0xb36000ul,
          /*prot=PROT_WRITE*/ 2ul,
          /*flags=MAP_STACK|MAP_POPULATE|MAP_FIXED|MAP_SHARED*/ 0x28011ul,
          /*fd=*/r[1], /*offset=*/0ul);
  NONFAILING(*(uint64_t*)0x200000c0 = 8);
  NONFAILING(*(uint64_t*)0x200000c8 = 0);
  NONFAILING(*(uint64_t*)0x200000d0 = 0);
  NONFAILING(syz_kvm_setup_cpu(
      /*fd=*/-1, /*cpufd=*/r[0], /*usermem=*/0x20fe8000, /*text=*/0x200000c0,
      /*ntext=*/1, /*flags=KVM_SETUP_VM|KVM_SETUP_SMM|KVM_SETUP_VIRT86*/ 0x70,
      /*opts=*/0, /*nopt=*/0));
}
int main(void)
{
  syscall(__NR_mmap, /*addr=*/0x1ffff000ul, /*len=*/0x1000ul, /*prot=*/0ul,
          /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/-1,
          /*offset=*/0ul);
  syscall(__NR_mmap, /*addr=*/0x20000000ul, /*len=*/0x1000000ul,
          /*prot=PROT_WRITE|PROT_READ|PROT_EXEC*/ 7ul,
          /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/-1,
          /*offset=*/0ul);
  syscall(__NR_mmap, /*addr=*/0x21000000ul, /*len=*/0x1000ul, /*prot=*/0ul,
          /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/-1,
          /*offset=*/0ul);
  const char* reason;
  (void)reason;
  if ((reason = setup_usb()))
    printf("the reproducer may not work as expected: USB injection setup "
           "failed: %s\n",
           reason);
  install_segv_handler();
  use_temporary_dir();
  do_sandbox_none();
  return 0;
}