// https://syzkaller.appspot.com/bug?id=2bf7b7983c2398ec6f0c4c6c87cb50223e8873f8
// autogenerated by syzkaller (http://github.com/google/syzkaller)

#define _GNU_SOURCE
#include <endian.h>
#include <errno.h>
#include <linux/futex.h>
#include <pthread.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

__attribute__((noreturn)) static void doexit(int status)
{
  volatile unsigned i;
  syscall(__NR_exit_group, status);
  for (i = 0;; i++) {
  }
}
#include <setjmp.h>
#include <signal.h>
#include <stdint.h>
#include <string.h>
#include <string.h>

const int kFailStatus = 67;
const int kRetryStatus = 69;

static void fail(const char* msg, ...)
{
  int e = errno;
  va_list args;
  va_start(args, msg);
  vfprintf(stderr, msg, args);
  va_end(args);
  fprintf(stderr, " (errno %d)\n", e);
  doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus);
}

static __thread int skip_segv;
static __thread jmp_buf segv_env;

static void segv_handler(int sig, siginfo_t* info, void* uctx)
{
  uintptr_t addr = (uintptr_t)info->si_addr;
  const uintptr_t prog_start = 1 << 20;
  const uintptr_t prog_end = 100 << 20;
  if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) &&
      (addr < prog_start || addr > prog_end)) {
    _longjmp(segv_env, 1);
  }
  doexit(sig);
}

static void install_segv_handler()
{
  struct sigaction sa;

  memset(&sa, 0, sizeof(sa));
  sa.sa_handler = SIG_IGN;
  syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
  syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);

  memset(&sa, 0, sizeof(sa));
  sa.sa_sigaction = segv_handler;
  sa.sa_flags = SA_NODEFER | SA_SIGINFO;
  sigaction(SIGSEGV, &sa, NULL);
  sigaction(SIGBUS, &sa, NULL);
}

#define NONFAILING(...)                                                        \
  {                                                                            \
    __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
    if (_setjmp(segv_env) == 0) {                                              \
      __VA_ARGS__;                                                             \
    }                                                                          \
    __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST);                       \
  }

static uint64_t current_time_ms()
{
  struct timespec ts;

  if (clock_gettime(CLOCK_MONOTONIC, &ts))
    fail("clock_gettime failed");
  return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}

static void test();

void loop()
{
  int iter;
  for (iter = 0;; iter++) {
    int pid = fork();
    if (pid < 0)
      fail("loop fork failed");
    if (pid == 0) {
      prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
      setpgrp();
      test();
      doexit(0);
    }
    int status = 0;
    uint64_t start = current_time_ms();
    for (;;) {
      int res = waitpid(-1, &status, __WALL | WNOHANG);
      if (res == pid)
        break;
      usleep(1000);
      if (current_time_ms() - start > 5 * 1000) {
        kill(-pid, SIGKILL);
        kill(pid, SIGKILL);
        while (waitpid(-1, &status, __WALL) != pid) {
        }
        break;
      }
    }
  }
}

struct thread_t {
  int created, running, call;
  pthread_t th;
};

static struct thread_t threads[16];
static void execute_call(int call);
static int running;
static int collide;

static void* thr(void* arg)
{
  struct thread_t* th = (struct thread_t*)arg;
  for (;;) {
    while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE))
      syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0);
    execute_call(th->call);
    __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED);
    __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE);
    syscall(SYS_futex, &th->running, FUTEX_WAKE);
  }
  return 0;
}

static void execute(int num_calls)
{
  int call, thread;
  running = 0;
  for (call = 0; call < num_calls; call++) {
    for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) {
      struct thread_t* th = &threads[thread];
      if (!th->created) {
        th->created = 1;
        pthread_attr_t attr;
        pthread_attr_init(&attr);
        pthread_attr_setstacksize(&attr, 128 << 10);
        pthread_create(&th->th, &attr, thr, th);
      }
      if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) {
        th->call = call;
        __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED);
        __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE);
        syscall(SYS_futex, &th->running, FUTEX_WAKE);
        if (collide && call % 2)
          break;
        struct timespec ts;
        ts.tv_sec = 0;
        ts.tv_nsec = 20 * 1000 * 1000;
        syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts);
        if (running)
          usleep((call == num_calls - 1) ? 10000 : 1000);
        break;
      }
    }
  }
}

#ifndef __NR_socket
#define __NR_socket 359
#endif
#ifndef __NR_mmap
#define __NR_mmap 192
#endif
#ifndef __NR_openat
#define __NR_openat 295
#endif
#ifndef __NR_getsockopt
#define __NR_getsockopt 365
#endif
#ifndef __NR_ioctl
#define __NR_ioctl 54
#endif
#undef __NR_mmap
#define __NR_mmap __NR_mmap2

long r[5];
void execute_call(int call)
{
  switch (call) {
  case 0:
    syscall(__NR_ioctl, -1, 0x40046205, 4);
    break;
  case 1:
    r[0] = syscall(__NR_socket, 0x1f, 3, 0);
    break;
  case 2:
    syscall(__NR_mmap, 0x20001000, 0x1000, 3, 0x32, -1, 0);
    break;
  case 3:
    NONFAILING(memcpy(
        (void*)0x20001000,
        "\xe8\x2b\xa3\xa5\x35\x0b\x56\xe5\x98\x56\xc0\x26\x63\x08\xc8\x2f",
        16));
    NONFAILING(*(uint16_t*)0x20001010 = 0x4202);
    syscall(__NR_ioctl, r[0], 0x8935, 0x20001000);
    break;
  case 4:
    NONFAILING(memcpy((void*)0x2025f000, "/selinux/commit_pending_bools", 30));
    r[1] = syscall(__NR_openat, 0xffffff9c, 0x2025f000, 1, 0);
    break;
  case 5:
    NONFAILING(*(uint64_t*)0x205beff0 = 0xab);
    NONFAILING(*(uint64_t*)0x205beff8 = 3);
    syscall(__NR_ioctl, r[1], 0x4010640d, 0x205beff0);
    break;
  case 6:
    NONFAILING(*(uint32_t*)0x20081ff0 = 0);
    NONFAILING(*(uint16_t*)0x20081ff4 = -1);
    NONFAILING(*(uint16_t*)0x20081ff6 = 4);
    NONFAILING(*(uint16_t*)0x20081ff8 = 0);
    NONFAILING(*(uint16_t*)0x20081ffa = 0x296e);
    NONFAILING(*(uint16_t*)0x20081ffc = 0x3ff);
    NONFAILING(*(uint16_t*)0x20081ffe = 3);
    NONFAILING(*(uint32_t*)0x20bc3000 = 0x10);
    syscall(__NR_getsockopt, -1, 0x84, 0x77, 0x20081ff0, 0x20bc3000);
    break;
  case 7:
    syscall(__NR_mmap, 0x20000000, 0xfff000, 3, 0x32, -1, 0);
    break;
  case 8:
    NONFAILING(memcpy((void*)0x20597ff7, "/dev/kvm", 9));
    r[2] = syscall(__NR_openat, 0xffffff9c, 0x20597ff7, 0, 0);
    break;
  case 9:
    r[3] = syscall(__NR_ioctl, r[2], 0xae01, 0);
    break;
  case 10:
    syscall(__NR_ioctl, r[3], 0xae47, 0);
    break;
  case 11:
    r[4] = syscall(__NR_ioctl, r[3], 0xae41, 0);
    break;
  case 12:
    syscall(__NR_ioctl, r[4], 0xae80, 0);
    break;
  }
}

void test()
{
  memset(r, -1, sizeof(r));
  execute(13);
  collide = 1;
  execute(13);
}

int main()
{
  install_segv_handler();
  for (;;) {
    loop();
  }
}