program: mkdirat(0xffffffffffffff9c, &(0x7f0000000340)='./file1\x00', 0x0) mount(0x0, &(0x7f0000000240)='./file1\x00', &(0x7f0000000000)='tmpfs\x00', 0x0, 0x0) mount(0x0, &(0x7f0000000240)='./file1\x00', 0x0, 0x3e, &(0x7f0000000300)='usrquota') getsockopt$inet_IP_XFRM_POLICY(0xffffffffffffffff, 0x0, 0x11, &(0x7f0000000100)={{{@in6=@dev, @in=@multicast2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}, {{@in6=@remote}, 0x0, @in=@local}}, &(0x7f0000000200)=0xe8) syz_mount_image$bcachefs(&(0x7f000000f640), &(0x7f000000f680)='./file0\x00', 0x0, &(0x7f0000000280)={[{@grpquota}, {@degraded}, {@fsck}, {@journal_flush_disabled}, {@fix_errors={'fix_errors', 0x3d, 'yes'}}], [{@uid_eq={'uid', 0x3d, r0}}]}, 0x0, 0xf633, &(0x7f000001ed40)="$eJzs3AtUTl+j9/2rc4QOTkWpqJAQKZVTpEJ0QIpKUQglpAhJoQNCOSWSQ+iEiiTpIEQKSSdEFCrHdEBE77jvzd73/j/3f9/Pvp/32Xs8Y38/Y1xjrjnXWr8115qz67pmjZEAAAAAAPA/Qv42r88WfUzuBC5q9Z9yxSNAICXy13bJ3wfI/CrX/Xf1EP+VJETl/1r+cV7EX1Yv359u6hgwo+m79dZ7N6+cPyb7KMJ4ckKbZePz7NyOf5T7ez5p/ltdqFVIINg63ulz8M3C3n9pExIIBCJCMpsFAlkhuZuyQv8+QUjwTSAQuP6qqfwhP6NVZ/FfyoAdEv+uXfoPxzHf/2eT/DXPhHWyg2tOmqalmhp9rvdKNdz8b4cI/eWYy7/mk0DQzfmP5wv/ndyFLm6amssX+R7XSqhzet/bLSF62qxBtnZnu3RyPBq6LmJETMiz2QuGXOgsJhAIOgkEggm/zvs9W+V/X/xXaSUQCDr/Tb7+P7iv/v+b9z/sT+rKv0rxX6XUP8j5vV/1D/U/PhuhPzlf7A9l139wvf8s0T/U/96Y/T1/1t//rC7/l3L/Ud7v+/z9Npb5q9T8T+aL/H4JCYSFBKL/ejl3oX+bI4K/GTchgdBfx1LyX+vCf60L/01/xf59/4X+UBf+Q11E7A/39dfr/ppoIkJC/77993F/aP/9HER/tav+nbH5W7P+pF3hVyn56wf16++64I8b/0Lqf9n41/v6q9/9avwP+vJfQfhv3oP+Xvu/DvyvwZD61SYlJPe/nNPxd/zeJzq8y+FgGVGLP34e/yaULPQrX+ifyhcWb7k+z0hFU/7P8p2Ff+UL/1P5o+cGb1xz31/jT/P3/M4X+afyXySernGTD+kr82f5jb+fj+g/lT9Qt1+Q5D15+UF/ln/sd77kP5Wv8fZMU9a9wPI/7b/27+fT6V/K/2S+e2PXJR7HVlX8ab7gd37nf6r/E3bUuxnFPd37p/m5v5+P1D+Vn37Yolpixo1L2n+WX/w7v+s/lT80cOB3022mY/50fhr9fj4y/1S+zPRVLo+XiwRK/ln+5v/dT1gAwN/T/dd3rJBf9f9onSrzH6xT/0/9zXohUkboX77zdfn1+v97rfa3/nKdbv8X8wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2+w6mhRCbrn4JUiqrT2QaPEr9YevqK/tiREBYK/bD8RFgieSey4LLVi1HjpnOGHntxuTdbbcPKVRNtz/Vq/Iunw4NoLVonv9IttcwZ87pToOPjsmLhC59iSV/Y+Sh1a7weYVi19JNgTq5QhmK5yxatL2KJot4JnqUean95K/Lm7+vjDagVXU5mWfGOZ+PgfcRdSA0R9x3oVrLXJ+VLusSxfUjd1wcWxYh7pNel288pWnxuwXNFn6cKaqdMH3/Et/9mvRMzBdHjWIqvrscOGfJ3fx+G26ZqZIrtmlX79sDZv3c4qV7mw4k/D1XNKwoP9Ch0vuBVufPK+ZI+Scu3U9VkLi75cTpwuuBu+x8/plIPMbLOuwT89zx2rqD+40aKtv4bysR21mwa0lg3f2rNoqvHAgzelvAJm6OXJ3v0oH+cwcNTrlbkjs58ELumxY5ZHsNappqtSKtmXixfc9Jy2uNrOVjHoo9ro8A7bjtnvFjxOeSWx6siFO7Ep2yXtUpWebD4npF/n+z1zSf9Vzxr8LKZa9ve2+q5ue+Swu/1xt7bF8ckqg2p+pAfNvGkU+tYw4FnnglEOYSev6Fp96/5EdV8nVTuT2rZe+X2dg59lXh8S0z9M5NU42cv7m1wT4g7J/ci/mKySHOfnfNaqpcuC0gdf1b2vnawKVXi3LHCB9Gg/L7GoN2KSZWfv333o+Sn36KunhU/9jK5JTTpbp+uupBs/qMnyZnKUWX7J4Vs11kphHwcOywmRXK5XI3qzoSRh9t13ofM+Ca1w3XPgmNqJe4ExZ6syRUJ0ZprqP381Za60uKiVqNbAFB3NGWayJfYl/Sx6VPgbCRkoFkiXJGYtqDt9ZHZ28sXghGSZybIv573fdOTHtvMT78x+cPmx9I6sBIFO+8zXh+W9WvS6fx/mkBWQuzD+i6vT0ZOOKyd+O1N+9GrIsvTSwJXi90VSx3/UtHCvl9dwVSw9GblcT3mVdMjyfX2Df96QtpmiENndJfv5xgt7+vYr3zji8sRZne1n7rPYm+ncRVlD5/PjDvtlS654PlD/kvw40OWu8rTn110lm9e/+C50vLFL4Suha7HBnk9+dKtuVBb03Vc2+3TgtGPKB85MdS6cGZXzXFw6JXmMzEUvx/H3IjuVSQjvLu5yT+NcD5dsUUXxSym3NZv2zxKcWXn1quur6FuaxuIb1Q+KV4136fzpkdfYsY3z13Uz1jg3eMZ97ZqQKNdgJYuy/LbFW/2ee9n7ahb553xxFmtSXXphjMvrLx0j4jcYut+z1msu/3rPvkuPCYEH3k7sNPbZAy+L2thVFzJkSr3azkQOMltbGXS/4sDD2L5vcoO0jId1bL+9XKiwZdfbNQrr38Skfz6wwiNj/jDldVNPzUrqmqqcKrNu+gm7RVGX+s/qFRfwYdPCihOfx3sv8ynt9NF589P60M+jV/mWjjE5vPB+65nEiM93xgptP+gm3EfPQTymrSjntL7SroaSRRtcDskZdTz1PZT8KLv3opDwFyL3Bis96ijWnKAtuubijMvr923yfinXLt1JZ+2l0KNlVjviX8jJPN/Wty763tyM/fv0L825auJ5IHbD531qBx91vlh/xPaO7NHzkwpWXJwaravX7+Nn3aGBSkMy67vGl3Vs3DR3mcbkiQ3XR2zun64hMvTaqXaddQeGL+711lpq5sTF51e//Okqq9VwfZlkxIf6TQ15Ld31Frz9UVz08LyzvualY9NERj2w3NL5sPDaqm8TV8lV+Zw+LbtI7uPepY+EA+1Gm9gfSbNpybwXmbH18NKgBbKtMwIsRmx6tHrWjpQke4GTVLvCocGFQjON355bb2zXp1HVJ/DW2Kzm2j0pXWX2X8m7PS/06UIny7kGh0b5mfQ7tLfk7ogtoVqiZwo2vqkIu+VQPCwt5oyfl8zYcFeXpzrmNi/kh76zeFk1QmNVaXJdr7jK0n0hwmfuxsnNnOYz/ersTXtNj3m/i3KqyVSPsTq2OKnH+QkHpV6tWNUkcWHg5N31WVs8WyLbDqjud/TZ3qyskld3NPK22torn8+tmtnnus7FOY+25VoM77idHTuz7/RIv8b1NyeFCgt75sevuKMc4TxRt5//8WWC/Sumd1r4cK2XqeKnrlVmwSLZrkZeWXumx7o+jHw/4b72GLuIkQFGh2ZJbBi86oLqWschhq4vvUZc8fnst9DBdmldVodD8oOHodKeuTJWBcPbfZ4OLmwcbahaeWnjwnIHpXndQ1+0n2nsFXTvRN+kz6trPHrkz++kayApEXBK90lNjzjruWfk1zblCPmL+rvHSVglRiXmBl7z8EjYmqS3oEOs2vqRZ9SaxsJgo/2a+aNNTrz31lVW6iNleHjL3MsxruEhslr75OrbxnbL07pqJjw0tXvUI9Ujp0PrHy55USc59+W0unvj9Ve+X9Kl8aPU9E8D1WIV7734tmXs05bKLv7zI9ddXHn/8qthCwUyS/Vq3Z4/aXN++PabUpqnQl62svjEkoMLekqbqGi9NJ1437z3BpMJQ4c/WVVc81a44Y3MqY1HOs7PLi8+09ezuP2mzzoRt9FjPN67tx1xCxv2JmN5UGhhQXhblMSd8vkJUvNauzXITL82ectWm/AjBjKR6xJfpG4IK0rpd8l5sFjHbo3SVLNmmddbhqp/uPT59bbqUabHVjw1yi/cN7Nk/xTxu8/CCs4k9nnxauTQeVlJblF+6+Z2k772qWB2ZcrpD5FKa83G22aWzN0VefvqnPCwodFn+5zZnjwpz+Rnf6HFL1vXu+5VdNLTXt55t3jNbb3adpOmZ6mSTj3WCd7F1gx8nSWadnVLon392R9O3YsC6xy7uJ3dN2TNsDS5Yyq9Y8s2KVktG39YOyIkYPDR0J/y5z5OMhGYvtW4+HjGe/Hw2OU9BsXtkR143XXupKLbZgpZulcrdkwz35CyWmXsiHWXjeuEfcKdVN/JhH8R6rGwafRYqU9WurfeDriskWN93u5dsXFv47Deg3doTvL2WtcrY0+hrI/93i2T1TKeZF6fYXF2ndwVrWnD1okatXlLbS2zVBweFHDbJu3L9oE+wpHd1Gacbm4fZ5IUuXKTlHWvmmg1s6MTFvtaJvV7/qhbjqXVO3HbjtZTDzfdGOr95YuyWtuVenHPleHqb0btebPUOGC/o5ZoL705/b0iDp/QPC+7Q9a2dWHEwSW37bVzy8Uar7SOU127bPeRHQ09LAYNKEnLzDm+OLHLct2pyyutq2elfhW/LC6a1nnJy1GN185ZTbW5kBEifvdsd5Ma29eDVhfbdAyo3PmptdR/oml8y8fy3uLplXaV9y3fmUQnyeqqWdvrbN793G7QZgfjCT+/i2S3BLh77j44wXTFkviZkgmurmPHJc118szwiPUZfGDigQVHVw6+2an4TeCaZT8UPDYpim3r7Wyo/mOv2JBJEadELMS/9hxs5zJDaGFu3fWKx9MKZkWovgt5+2TmetGkLq9UvhrKLT0Rtjdg2BX5A9ZLVq1IUh81MjvDJWaSzoczhpaVL7ZrHY7veWP/nHIhf53INzMnNoXMuFWxef3qZxnyPnuOOdWqP5LWa+tTpazzqJ+jnadlzJDWSP8Nl6WHHFZcXi66V+dDyVDZCtPSxp/d5DannbDSUzJIHeKQVPnT3FIsYo+ClU9g3EelhyL2fcJm3rnWw39M1elza5yLdjlrhrU6pUnvtxl4NqDvbbMzUy+1yx0QVxt/2XFrUp5ifcx5CYXhqzVUF7VZXWpfY1O855J3aFKR/rQfU1Kmm8XKSp+evWx8i2u3tPaLuxTtDbMUn9nO6/VjcF/Vi/sj12rohN2c8+aBjG9pL4NQO0+jKcZf9PZKHvocLNT6XjCo/py9+uZdIoY2cu9NPi4wip9xMO6wwqb5FUuuvx+6z3n/ZfvFa3a9HHpHy2LlxHsmU0bMuq+bobt+18+15ypr1ZKOdfr5vqdK9dKaUT30A+ZNKN2U9FYr2m/QldcTqwonX2ydeOvedLcv6jPFi8btm+O798Kwr2km85WMQkwKzHyOTmo+/9H2u5zy2vvNOrv9n91sUhv36bTqvii553sVfnw1fdlVYprr0ibhmNiU7PPmqq/tun0da56Xrjft08dtG3VVmvdffB04O+LZsKDWrZd8x6efSpzZYFHY9ab5osW90hdnm997rb0w2sR29LH5a2eH3Nc06rnV/vbhiA9GRU7jox7IfZ3jOMS5Rep7Xf321LODUxbdzVlwauQyk0Zd+WFDJ3q6BD2rfbBae+WgvCdOgV/iuy2y9HlR+VilYM+biR3B5nX9VV8t/SgmWDn0XI7VgwkDL0mXP3gxeeP1S1vNNaJvnxmr8Ex11AJzjzibRaM021RuvFZT7uQ4/rxn6PpJwZNOVP+4uvFEb+sub7V/iIbPun+59ZyG80z1w+0PzSOfe1pP8z7UzzXurfJmwxb7p/eievdtGRgRP0W7OWCkTnpSjF52Ye4d9wXLsxXKcl+lPw16JbJ7gpbFt06z1MYFuPV3v7Jr+kZjoQ02LqJBs85JN3VMVZLd1HNlYqzlwkvvLC0V+iWM7F0Y2vlsSSexSd5HFvp/kFF/93TR2T3B4u2vDfSmq80Sj1Mv+yq1T+957LZ92XXxr+PsBroNWTVoeYV29uwlaotk9SI8ezYHC8v9aJkw3FbnwLYnzWdfm184WT3RMXpW9ibRmGbXLhnnLKxz54QstZrgHndFR+1Yv1F7Xe96Fe03r0nR1Zn54mxTi2L7z5+bClLkDs//eGJSn8gEd7HhNhs2NSu6b9da9CFee2z8h6TzfkOCLh97lDkyuEXq+I3jMlHF2hFBt3+4mLzuNMlNopfTj283VEy+bmyS7BPjUrTLYL3Vku9Wg9c/DXqRljmnxaAwV2Rz4ZLUYePyC158G3/u1vAHLqEdHocHf+1jcyz50aMuW+MPJe9vFL1++uX1c2/btFSUvDt0LN275CwMWypec27y63NW3j9Vqsa9y3lkW9jq0vJ89jAfz8lHio4vyus4NEN7w8/izRcCshyy0j44pJRusa0uahDqdGB92YhqqcJTC4sbJMPP3JjY6Wf123uOBQMLrGNm3Gurckj5VOdwXPPu5Dtvb8hN2XVHd/BbHRMliYGOCcuCV3rrb6lLUz05zWBj5G7lE0PXx0UuXxPff6WPQHqa5KdAhSU7nFes9mxdatzX6Oq2DelPm+ZJ1itODNwfMO3V7B7+Y+ZKCX8d9Ojqa/XLfSVG9t5r9Sb3YPylSlHDvUl963scmvzlVP/Idzccpm2a2HvFT5WTITf3HZUW9bJM1DVUqPYzuj3TV1z7Y7DxyXFHZDcru0WKqLlvtLtxXfpHcFWy8fRet/yN12zQnBos/K1b3fweEfYjek9X7jnbfLPD7X2vPuzuaDwf/vxn9YCSj1L+MQb9tYO6q0wRNtIQe9I2aXe0zM4Gv7G+BgOPhmm+3rAocPin2cMXOK1ImlglHzd/nFLvFzlxgk7eBQkDOqzqtN+ZeLfWiFoveRewZdKy1oon7xOu5C5ebOttMmn+m6nVh9Q61Gri1k20dNYa9ODm+oxPGcPsu0+9dkQt3Slxrfjo4zfHrKydEdN9XExf86SNqStFLT7UW+tPcNq7x0h858FFd0dnaRz/9qTzkUgf7zExZjJnTL3K2pY+b5a03Gh73OOqr6/zoWXuBcu2W76YEFrTLa9Lz6b3AsOoXnd8vH/mXtkZdHzuPTV/L9OBS/d61i/U73TgTGOZtuiUbk+7jrE1tjOWfOUi+v5gYWy0qoShROn7dt/ad+HS66TPS551Sng3vb1Dqfc5i6Kw7EvXT9unel+Qm3hr+voUv/iHMjOvHn+gb3/h0+0ZBTGiEbp3Tmpbvy3r2V547OqYTamNrq+nTrXfvGCF+W2jceODNTrKNzqojuzpV59cfrxOymO8fWr1x/Sj3T8tHBfm52FZ2bKo/97Vid/0Jl7aOOlNhdWHaPvvP80PTjbMszVXlaxwD+9xX6Hq2YvRhqbOZ2cefjHnocCn0+3J117dE+mWbFpjGzbDP2zwzsDs7BNWuwO2lWU+vrSnwyHw4zrVdUsvjG1q9V5UcmzH6skaLppn2gxc798uH39dsFqqyMFDQ05qdIvCVtWtU6vPLjjy+k3HVquw1+nlcZt7N/841Brd+3i2VsYdYcWaMQ5lDkn5suGxsXY9Vx090sXiYneVBLFdOSNUDX0M9TXi6093iB2fuKPx4/dCL5UTFaYGA5XfD9Trs3WD7ovBfe5fv3h11/10Ya0K8y5Zp5tKGms0ptx8GR0x9buLR4luysfkwNbOtu8X9z3pOUJ/c87afU6qjWN7Zc7Lf7fRcZCcjeOLLYmjwjpGbJ2xr/+04sb3D+vsxRPaLHfL382R7ici/2ntrOTh5grx7msDrV8Gie6Zd0WlVCpAbFG75khdzy0BhfsyNB5uKsoL6sgvW/U0epjFzpKF3ts0v/18eVje0KPbisBsxVg1W+tdy68I2987rLu01fXkVQmDvIDLfYwfzAwWqcu8l1Z4OkxH0d+78YjcYIXYKRZJ2Q+VmybotGZ89Ui+2P/Z7l5pnT7MzLpsnv7IMlXjtLrJi4Xp25UHvzmsFffyvMeEg2EmUqM/dbZIb39oKuX39qiUVc3z0/WLBhwI0wvJGuD89biF8zXlVT20h1YclN89+1nu5NWD1oWukqsPulT0RtTnuLvjikldTXKXphg5jxVEtITfv3vTcJLye3XrFZ9OHR61t6Q4MrX/9trhhioOXwsmjD+m0799WfSU8lEpy6dKlDVVP9aOPpB40SB5nrFO/b2PtlcmJB2y0XvQNGfOBt2wesG6/gGei81ctp27MNbAsnj3kgnf6xr3t/Zxeu5U/f3rjL0u349dUa25mdFrl1bXQfrvkqdL+00oLgntkvq9fESJiMwiPSthdRPjyJyuYyf1O93z49rpjsoPct59WDxb9/mP9TVDVlaJrfaXvuz29qHuR/ntNsMlqmv7ynh0/dol+dKmstKvwlPWX+hacS9L/bq0yYIny1ZGqOlP0jSItRFfJW9l2tlBvMHftOWL2KKgKqe5R1+6zrzwKk9sT1nuuxnKErPLyl3cMx/4xHc8E4Q/Kljj7Wqpdq6T9FKVtBGPRXzrfBULcl/tkT6osFnI7vXHzJJGt4U6188f9PuyLXR40juJ1Tn78+bELmvQ8r1z5dq99gNPn7y2fCEdVSbw2bwzoHJh99R417uRJhtkx72XmVkhFSUSqDRu1NnkdI08xz5nql6V7BKxvXvZ1WtwqCD1vnDZtaslz5b7bR7X/YSD+PjptvuPB/XXfVS4LP5ATo54fIWuiMmhs7knTboqXHcTeB43Omp17fLKPnM8yqXcZt29Yr/unc/0Hd7Xh1WlucpK5t8sifwQetDZPePz9TPpejojVsXk1i1Kc3dKm+xoWFRREa0eMzPbWfuAXrd17wLGbBFb9PlC9bMz46wcFMO0HDwX3xdUeiRtG1J8wEBqdrXjgITCKfs722w1eF11fmYP1asXd8QMMtppWK8tWqmmHyGzq5ecomGFvKjXroimjtzWgUbOs3f2Ud7kFpYx7MaNPjVlZtuvWPaYrvLiwNApTQkD7ztpv/N6/amvxbvmI7WTRmvOd1m8sty1/UFL/356kflGhzzWb8gL7z0wacI0PVdt5+w7bQ9KBtV4RF/NTF4x+F1VuP8ZLYWsvt1EJQQCQf2bMY52coVtK7znVN6+UtT+KCIyTeDWqG4iX7i+ePVOiaUtX+9OeSap+OF9sL32fcObzep2SVlTh+tEmQ0/ezhApbbPngkF/o03ZcRPbm13U30pX1is0KlFf0H73u9bnD9s6l/i36B3sG6RyaGCZbcGrRSV9tHMaLmg/GPOyK/LlLtaW50U8vWPDTzR4J5s/36EV7Ntk2myupfyhp9+b9bbXjvxaEmDaUOa5LXyooKUvCed/Q4envBmy07vSe9ff295P6vLwf4PMlf0V9jWPSDxrd/Sl3rhDlLKi7a6Cs9+GFu7ccgA9Q9vDxzftlJr+qUjQpo7Wzdr1ZpufxhSGig1xGmh5t1VjyVy4pu6p9SseSAYPOTwgCfGLuGS7YLdkw3tLMoGX0+J8evT3aOPw5Vi5X5LPbrt99WrWNLrwSpzA5kLepMEmT8CR+t8iVszJ6T4dF7st+Swl1k9qi5lJoRPPfNcPFRx9nvLrsYvK493P/X+2JGRtjIqri6eiy129Nk4TbtCIsSsfFfOrmtHvjskHjr+IXrXm7zBj2Lzhsu/PXO12eeRrntn/aGmA+KXRIx6JmIftzC9oX/42uxvOxNXto9pMqkRCQlpPGz6aMh/46/iAQAA/kt4l7gnfhg7ZPaUoqdSvVa0mR2uN/OeHdjDV+zX/t9//3cTEghy1z8e1979TYb3ThsDg7VJY832m6y7HXNmYFZiZIZyWD+3PjsXpBwJi+8qGr5Exe/DPM2pR730fg57s2OO+7HJUbEzWuvN3i+SLt/65ObNyk4i1XdWp7c4NLqMTuiWVh/+UD398YFPKw+cDph85nHVEHWh1TLdxNb1jZt8O1n+kLlH3I/oU97tDxp/6u56dfGN5bDhqbV+X1aNchmjfqxeZHVQULCkWYzR9uQ7YToTRqrY1N5XccmX1bRa8FhBvSpn287Kl4oTSu9ce1o39sPssBPdU66WKLhJvJjyLnRA1JDYG/Z75gW9NFi3XcJK1jpi9bRDZq5RggfZpjKrS4cbNR8ZlVDeMHvBDpcbQraiJpPjj52eNUZsUI812SX9PDxm7m8e/rMpN0Hm5phR3zLmFh7taZLepvQz79bCqqhqr8Ntcwcqdupz60FM529SiYtmJ3fdc9G3X4PxQL/gY1MrFcaY53dvTM/cvmbj0JU5yWMvS8elqU4u3/LaYvej0nU9z7c/FPEICNLPT6x9qth6y2fMohG9bj/U+1AX0z7fTNz8+tx5w5vLPJykb7RNUDyT7ZZ99mPfkIfO399+y352vpOcSVB/kfWt3YRz9wau2iU4UmA4yuKQy6j57RJjemfN2yJi4rFB69v6jzY3loWsfet0ouVx1PjVF7Yva+tlWLcxSlR8kvxlv7iUrT9mm0jljujeeF27uNln4Alfr7gbtWuK88QzHh/fPr+n7H2dZyFXm8cI9g1oLIpz91kZmLlJvCHAM1f9qsmgQYeiSlRlt4k8VTYvXqRmEJ2eYVok6mS8c8d0CXm71yOFY8YWKVRZBh6ujc34YfHGpJ9gws/RVRdNV6d02WgZEVFcG9iwaJTf+8UWmelnv3WTStM7YqFXfOu8iO7UwZYr9tpPGWy6tUQr3P2rzIWawMvuiUMPzTXWyuiq9cponfWtE8/dyxNP65UU6BlEGTwYrqP01epog9URSZfSD2o1b4fOCt/0vbr+0ICCvb76+06WRPwYdTMkuqvf+G1TzUsnn/CtbOr99Y7GwzcOG259tMluLkqtKc1/3vPHk5FacTNjlLfNthrx3aWovW/2Gq9KuaPdVHwPRB9/43pfbPs8+dX+kpoXykPu9BWtzC1dk3kicNbM1Ql2/TopSMdnGfWU71zs83z/i5cS1SXbT5Vsf+Bs7ixn/djmSt+bDZ19xT2rft5u9l+8vvf83eMXP0tVzhec1Us7MnXbfM+8+2ndrWtWe+0LSNIKOGlm0O+1ycwedU1mD14d3lOf5FjZmH8lY9uVk31e5oksXuObfHRahnV06GB7VfuWx5dPbQw4sP3mkCE7jwzO9Cz9ZPrieGntpY4d1QGyOtaf+hY9O9vt/YFEuWtaHy9Nez0mcUCiuYVrxaBHnz8vtRrX/D3Q2qq59bqifXPUs/IerQPql7+aZL1ONnW0pssnO4nHPrtj0lf3ufjz3IKd+sp3C193Wx+uID93aMIEx8zSnLoNLh5BBz5GfMk/tlXaN2nss473CUPWderVYnr1tNVRqYPOwm3z+7jWySd3a3E7/lmzfkD18dphSywG2Nc4JmeqnhFePU0u2edzl4b626kuHwp75GtHlCqKhznmJUnI3dB6d0m2dOvgD1LmXgHdjbaKJd/uHehm29Psy5q+4v7N+jdSy61UVFLO34waldqgMDJiQJF2XVGtXfOo4Wfrg+IKlzj1aenYWr3JsuzmzprmY4slvhs+Oibj+fbWGKWOQUcfN+wZ8cFpSIa1c+rb5W73fkx9JPXOZoe0YVJwzZ11g3Zu6nplc83LsLIHCj+1N9dI9Ox/y7ltkkbQRo/qqoaEURPCeo8c86rtgOlnjTndxH9uHLPaViCUZSJk2c9AWD1U/PKFnI+DrZ88DEi20ume3itMUqyrbupQl3u1qTemxdt2HTRfXcazPUFmWc2p0QURRVmz3AI9SjrZtx62Py9tqTfLuX2G8M/qyJtuAUPCBw5Yrrnk4RTNaWtDxnaRdQw6LmTtqFwksWP6zZHa8uP8X5RN7OPo5HX7y9m6XuaXWj/vmSc1u1d55x8lx4S1rk2IVvF6c6Qq+kvUVpemGWny/U9PdRc6sbWxn/zcV5OyQ9pPdT8uVSpds23G4wGhzp8tJKYaR6+5MnXNWe3uPef1q18j2qk1ulubxrxppbYz3PpPsfyu2lq/oHz6g64nJSUHmZ+20Ijw3X0uITp3ypRlBycP7TVautk1cJ7zTeHvGyoOVaee2OFRoTQtxTz6h9KhSfkWE3aqWpVsUl+/e0+Y9ZuH436mRS56+WzTF7nxK+5d87ZcovF224WN+Z8UjkcMnV+QOu2yT9p5Ufn84ooBtgWH5r7MULW3eC5eeLUyNtolL22E8f4xKlYeRtKv7/fPjT8xrGackNn6XksXVs7b7160wa5iQHRPMbP5eeJTrI+vabgU/ECosm/+5kdNjj1CHp+Tev5RfVTqMv8qfd9N8qqPP7s0zxe3WpFgmnFKWyfRd/Ce6xfebdq+UuB6Id8959jKWv2xsiZzD8zuIyek+kjFzErg71r8ZoLqofvjbVSvZnW/Pi5oTd/jS/QPv9sY2XOq47vA2VJLFUJ8NRb2HDEpK/NE0UzF+Yb7A74+LHksc25Fa7P126dqeSO2Rxzdnt/W2W/orIJ6/TSta/I/gm3OGH9W3nDLdFj1cll1ybPrfFXv3EoZs6U4eHD7ZkOx9oGixy9t35KjsPTWuivu1U9F7x7a8HTyvN3R3XfviNH8MaJFf3/74K9GHzvbHVhYKtZj/pyeTV8k5+4IbnW62KCx4kxfjWKROOfNZVvvGB8fNTJOQ9F4WLLe0hljtDd/d/sUmf7whdEclc8fZEa7zM0Nv6ZyvlLZIWbIqVUjns+LKSjVDTloGy/348NFleglaxWfvDVIr7r1cf+lYVExL4efuVtR/Tzl1jYxec04r+aqCaa+56vC5lbWrtJ5rpEqt8UhPqN6Y6rqOckLhYuNtGJeDXdLc1NtsLe2vLui/cGri2Htr/b19b4yVUM5o3NJ0afwuftnektYpzc5+7RsHjO2KXKDoaSLUoOsb+wGjUtLt65TuJ08JH1K+GIdw8V39/4wbYuN6RntsGx4zx6exd53rp/YdlGgN+fZg5FJG8aruITdSrQdcHCMwbTTxbPC4z/PbpDYF+WhmHbq2uKJOvE19c/kPbTXJ+U3ezmqe0edypte8yLHrLFc5m6zrrPVXr1us0at2FMo27f0lZTbeOuFEz+KCo+LXJCyKu+M4zahRNd7L3qYmY2s230+JmGBTlRdfq5/p7VdpM+fmtdh/UGuu3Ldin4WObOGrlo2wV7X8XzM0Nx9L08clt0UrDTISeHpc7nvd91jo1ZMl08MX+1w7pvjvJNvrzosPpZwv/7HM3ODFOeK7Lg935wy7XZ4Nzx5k2hWuvNC++0R57usHbn7iZi04YFB2gfzh0zqlCGflJX/8+XuRJnXVVt3jN5kftVdM7LFtGJA98eXxz5ZlbfBUWNzZOCJ+Dsv69xqby8M2Z8dbD/aernQzsXySo8yJVZcro2a1WF/UeG+u3hLvkV1a0rxxNgvqyv1Szt1uaE4uWJK2Q6VJVd3bcuNd6xqfJxbeeDa58i9Sik73y82i3Hu0d40b1NEXrnUx7g1ekO+OSYs9wmUXd7jxsFDp3qeFfdPb7+aOXbWNcUFlUcX3zkvKEq8PiXzcGqH2sO9a48Ou963vevK5Oixg1NWnS2b2v2ZchfN/ZmhGe1PAw5KHpmT9+HuVf8kxad25xWEfbbn1PgtnG9/cp35HcM7hXuGfDU6dbqz0Ty7JC3J0/sLKkWcqkXfFqpKX/ae0KGeqT6g4n3S8+268upZT73Nd+1Mrlz1oO59xXuDi0a3Fth0nTYxcFes+IvhSp9+du7tUmsYXt9d6/7UoRF+ZpbXL0StvehbbP45qCJ2ZvCuERcKBRcMovuYr5CxOfdk1+j9M/Y9t0sd8CVeTGTNhp+h/fpPWnT3x+WB62XNzlW0ho7W0j25aHH88IZ5752PLZku2rX4/DLxkU6bs0w2etvO/brA4GpvZ6NBLeHTtubLpL5cPfO/+Ws/AAgmpmQ+X3756bDtz6VtRp8SK/m9/hf/tf8v6381gUAQIxAIbu/YOHLO0Sjrj++/fR6rsFNf7aDCy/4GuUbd3GPTx7ftHvp4t3ZL8yLhveGuvTfZvw37tmXSyD6bOilaF9UPHlt1oeettojw/n5Z8X3URP0L68QVy5YETFhpGp7gne0w6KjqSCuTIV8v3anpfDJnvulnaw0Xp1emwpM88vVeWe6+k6il7adxSaxizOhlrSPsngq/84qL7TYxIGFU343WsmXXI2XX7T7qc/vFIItHR0ZOERWdYLd8r8Jst+9mztHX3qx99HV0zfc4a9nUkJXPhxkMqH8lnjzSwKx9zq1VmWtvnCxWO7Gq+M7dpQMXnP3SMmaaelTb3RzdUdedrlyz0tc7vFpU592etH7jZ9hN1Tz4ZbT+hwjvvTPnV9xItQ3erdkwd+eFgWPCDrw1WqK5deqsbzsKDsQHhZn1vGyz3bpSWLjzngmjVpzSa94bEaZvF/u44MTmhydsfpZd2BpwfsCxuPk91JomXJ+eZVfbdDJN6auOlv6zs+07z1yd81RQsePkHX+FmE1TFk1LULUfUtkwO/TcmJf3CtVKpfTK4wZ7934tNiD5cVE37euDnbIE92rUqyL1bW5eUlmg0rFg855ra+StFNdMHH5Qxv2LxKYVo/c96b323BzPwll7s7O3WJxIPBsV9KLQONFpyqSAxCH9dYfn3K/pmK8l/tJvyoKDTUrGX/r0vFEhJNvLpfaj5f1Ame8j9l0/k/S4SfFNcXPz88AvI3SMPw8J2dKcvcBm49obd20OKOWdXi+/bOXLBdahCw973XoVkV3Z0n5svbR8rEhWw/n1wZu1VdyOiYmtmOToLxuyzatyj828xWm1rhL9U2T1B94+3JpWVql2R37lwHWaTo2PZqR+Nen4bjF1tn799jPpm9ZUF39cOaqbaL+t8+/l3R9ef93m+fOeJ/32h84NlrnQL7NUYB2w5m7+xJyG9t2NOypOu5ov12nZZTs+OnR288hr5ipT+hdslNzcfd7twOsFe9You7cez7V49k42eVn4+OzgiRmj129s6OJ4bPeQL3YCs4GvFg0916ovb53tOXDWoVMXjXoPP9qyVenHF40Nu0LmdQ6Ws98q3HNa07rJE53m+M3PTHGq9UtSlzToUvSmJfZrgfWLaRNXmjmd3XVb+W1c1xmXE4c8MEnptei6Uqdx3TPetMoV9JV8ciSt9vma/kP0y0PzxlS9Pj+0y9PtDx5PVRnSYaj/6lus3dGQSYvLq6p7zig+sWvu6LLZ6SI9Z7kWZg3O8S6aMdfLwqP3dFtpv4w3uslXgooqf66Xd6nf43DMqqlHyJjQE7dS7gg5Dko3vld27HvHIYldWQbPlj8amf7ESm9V5eIE91Jdf8N6k7zPK818RaQMUnTVnjzunvPza+iTaKGY0a9lgjoeNvRVaHgxuKx5vNXSb4qSWb3XSkZX60bM7O17SEJiiqHiJZvc+rvfPL/JP+uUWZ4xp7xL5d5uP/bHd+5jLO3WzfOw2ou5PZ4aW8iXV6qERfu8HqFivreXvIRX1sz0nFWHndpK10dN2X6nd1A/DYPNu+4um5VuUzZi1AyfbNu5R4UfLVW2dl6w4O3EHjs77bu7JqzdzcizbPiVbmb+RZvjLYPSqy8ZP55aVPf54ngl9YyIRd0sAmzPXe2f90J4m0Js7bAdQ3Z8sb9ySODwY9jbhF67ZR5sG+Lx02iWe4nJnbcPnq33uWS1bsGuUu873U89tpGZ/XzHhQLzrg8cPAtCP0W8Pqp9Q/X+3vytz/2GJOtv3m5cddLaVXmnsNfp6SVxX6b5m9x6Yh1vczv8/qC82tGy9xsDPhUqNDRcPvrf/HYNAAAA/B9R3Pyt/eTHZqV9k2doSG8r3vZ7/f/7PwH87frfUKdLWyfRi9rqh/YufNVo8kPly7eh6mUF4z+rjZpVP3t8mLdizxG2H61q8/uVvb9zJWWFpbmd85H8dIGBnmJEaf8KA8MUlY4+VqnT84cuCexppqQ2wKnsQVDXM+4DTiTIn3CwEHvrOcI/rfO4mY+T9ie8GKM5KiHdeeia6XVaF/eo7vUfqmHiFj+tOsX/heuTPccHrrh1aU/oWMtbKtO9VyxbVvUtf+6o44Eq8kFVLX23e03+0KXqzsmlO47kqrn7Hakfl9jphPW0A1WPBc+jlkkPvvIqeHvPge3R27p4vbsXmtXTcGa82CqlKQfSE0SV7z7s5lXcqlXru1/qpFSX7/pxnmLvK+4arjKWyqkdV9F+tW9k2f3L0++fyS09sWTQNDM3/TUrjbOChBef8Fx6bF2D5HtBgdncgeO6Vdzvs/BW6oafVQtm1I6YLtgVfENqzPeEaA95S5+rDuvPH5aX29F0TUNtyvq9Lya3hSybKsjXmCe9x6aT8b4jwXcP9T+nGSQsd+LnthtRbY5ODrmrg8ZM3TvivuPJvKmau1xWjB5+/uF08b2Xqy4tf6olXbrTq+jbxKXxfeU3zR0zLM+/9lVTZduifbPC+whHeB+/vOjq1rVCNmk2M61K+46IyLo0zr6lwm6WmeD8h9ytA/dutNCJ9lc+l2s5+nBd/u4g7aDE2cGK26ZI5p99fGbtxrTnmiUP5u1QbqndtfbJt0bDHlcufFX99vWE4uKeE6fka+uci1Ir73du/vFhXkqn9owSLNcrNLEylLd2uCWTcvqa5tc7ub6X4gRZ/YzaYzS2Rh6psRyQZWfrPmlopnFoQ2lWiOP2H6uTO/km3GjNXG56t17M5UK/VxtsNKeM3TLae+Upu5kGptpxBWvGfd8woGOpSpebmcX9xXZL/3/s3XlYjm/f7/2zSSk0ImMlFEmlKEMZokyVNJsrFDKUpKSkosnQgKISksgsSREqpChTZSZKk4RERfRs931zrev+reu3rrV+a1vrep77eb+27dz29mM/z8+xH8O5H+d384dzfuKe7W/vjDvvOVBv0Pv52q1vEvbpiAbaVlYmz3ZfNrxfvZXhm5N6S5T1ZDbsH29ZKeHlMq13rd7TqXvTXq3omiM96bF2ic2Y452X5aQFB3QVLdHoulEz/anXrT0fF8y2PrhFcfrX/J1WvQrdNhtuDn8tHx5nbXQ6Pdx3vrnvpRkSFX2qvPT6CXzEjpm+Xnm4SGnC3IwhZ7f3V72u4jdM/9vW6q2dU/N7NtoEf3uZH1mkf6fkgIt1k86K7VJH8rOuvvt4X8hZZKR9Y5HQzj26g4zjrp2XXWuVZeosvd/QL0Gk+G7ahObAFbs6ZSsZtp3RGFVvazJnQ7f28T2XKq+V9Lvn8NF/geXXO0vXy78VDt702bjkxZKOD+tv1+zp18d4UIi6wuDmswXVsceXnFL5YW2q9Fb/fOu7aNMlU8bWDEnUGZk/X93XL/ems1P0ttkRSx5GZj3IaHcxrFuT/2FVz/NaarvCLsR+HZXrr2p51KWPhlGgfYDZMsPHH3p65AQP6Z6j4X947aRu8fF9L57NsjT+WZgv8uWCo8s+A195kxn7uyyVfb9r1If716N237hn/7qPrp3fhcDohVlLk9PGv9uv6ih1fklwzMV+DxdXD9gZWpWTbKwbbJvxPNb3lsjNWXZbe5SMO7/PzyBu/PC3F46svrgyVL90SbBHVl7CfE+b+ip11XuNDql9FYMTRB81ae+4PmlL9NeIs2NzBG5BA7ONEy82V97z31Zdu00ra9SI7mtbxtT2eBrq+mTWkLfrbjX29jtfsk1e2CXhTYf+l5Yd3fs91TmZOTt2uNKYsq39zDz0xjwcaigrvVCh3sJipccV/TeaU3R1bJ8o3HSUVbbbfLGo+YfK5cCY7je+r+mtNvdQe0tcv1cTRx2SWTIv45rjgVn/4uUaAAAA+N8i7vSoW8SPkvHf5/uY5ah0G/+7/pf4Pf6r/r8lEAiOTVZsj3OOkrbLWhBybdYEo74Tdm6yG1y/+ez93ferzh7/7Fji6demPnKkq/sHvR8qctNbLTRmzN8uneiQMG7R4u6K9aUbE8PbgybON3ct8Qs7oOe+IfpY9rfOZqdjKmtN20dcPLtp/Y5RwldW/dTUndrjx3b7nRqfrAKuxg/Ybrh8so7zx7Iuu671HJX807X7ReUJJR2LckuUuiSGVi3dauDV7uh79/bsaP8EBbGzi5WnHjKY0qXazD8iNbeLaFHi2ZERvtc0RLZ7vA0SalB/GlX3vHXP/FP6CZ2G6tldXxa7qmj/jcWNh1z1XZUWd8xJCZ217npgbpdxDRMlt0VftLt7Of/iueA+XbtcSbf011+5aElFU2e/0S3OYXYX5LaEBC3fVO0kofygs/1wx5SED99+PJt42Kq2t7/m1aL9hY0DpqrKn/vp1GnAYrfY2ribj7Jqj08bFze3Rjtlb/I0p+yGYDed7bOeLBw/PdO3IuPKyZaFp41XVUYdvaM63ELNy87RSmhzoESj/mUZnYazB6+KrR44RPzRurBSvQHakhXWRjMbr4ikzfSflHi66GnfpSd+VM6rqlO0kknI0hCX23jk2MoxSYGyCtFuq50n7vquOGqib5vVurmOzef6TNw18qPGhDIfhVFPtXPOmgy2nqzRXULCs5PrtIQlW39edxhV0z15xAHtH+XV2tfPZYypVIgzzUi4UzJ/XumysXOmBeaVam8Wt8q+m+w1asmrlVO21n63zjMSXRqjrjp36sXwQ2+kRxaO6ypwC/wseir2pM+VuWKbffaOM/RLa0huSpgb8XbLwk1qdQl9JDTfKKWeqB/f2la02bJi7cWYoQ9NR9tUNBT9GHj7xddXosZRmae1Nps6qgotV/lUmm+5/fXiQ+HCTYMbZx8w9vO0nFYulZz3zENl46KO/vmSb4+/7zfowMXC+DnHAh2OnHdcnCE+4LxX60HFgMUlibb9gyRV7ykuH3prtdmt2VYT66UPVbv3zo5NaLAUz92xxGGc8rjZVUO6ZBwRezx7qV73PtLZNT3SRpjEhJUP3tpyaNeR818f5jXKi2aqntzaJz7z59iwZ7nNL4/tSJRbPkQyvaZ34PgBR/o7fbo008Dc0T/9/Ye3uTd7PdNeYTHxTUn1oYP+kle6HLtar18+3yBWd0mVzs3Dr0VS48SiAnZpRbWETHX1cO96RXN25veJyqptefuGPdfsctclfupdyVNT8lof6ubM3uE4Ua/c2iD48+CQtzGXjdomHxm9boJioIzZdZ+Loz/NfTPbW2rGtk29BTOUa51syrcG3lJuMzqeP3nvYwP3k6brHM0ygtaYXtSv79nDx3Pgojx9i3EtezcOLPSdfWGo6TpJeaEvO7IHyxrKTN0xzyOps3SoX1zlqfs9vFs8BOMW+8urm01L2lZzWykpufa5SR9J7wrV4aILJpyYvHHwnKNLzw+VWbFcodcDGYfyBMsnztcv5umEfpi+tO7T/rQRmUmlPbTKO92XiVor9ebpCY1eb4ICnNoXb13q/mPU5MOp1Z29j922lrW/8NHVOqx5tW7h8NXDG9tPlp59kG01ZMGHofsLnW8qFS5Qvz3u7NliH/fj28+0u78YMzngoN0LTX1xL/3srIoV989eU/WolnOrumTWMntB8bti4apFkx3S2i8+WeiV33Z53XqV/mVBzQVPzyUfGrRr2tcRrqJ6YRI9LO965U+yWdYm+Wtlu7Z7XljdxlTx1Lbx3TMWTlCbMNpVpl+vb7tTltZrPZi0V7pX+/1sqY+Ldcc6R9pvWZpqf2TY8+2VFd8GJEqPi+gWEZFs8nHEJb1n3uqB0/Sd7Yp1LgfafPEwPus2eZCac+/DY6rGCElLOKrsKd644Zj56PhnRx+pmdZISWbmh24rOtaevO7DmpXdBNGtxtkSbTa3zC7fLcuv6b28wOznT7vCyasPP6+x2v+mamwv6ZiIa31ntmzYbb/TOFT//qU0jwUeay80+LqLJr95My8gdHxZ38Oe2wZ3ztjyvlP5Pb3k1nkPE8R0W/cZ9jGzCaqvuTt5W3819ekrl95x7ddvjIdXid6jDZ1vd5fsvD2hW7HnpTk2i3pdmOonNzjvfJe4bxfKDTx9X9q+H6Nyo3en7vIH3sTGv62+ke3zfneXzyukHT8aZVjKaeVb1FqlhNqfz37ks3Fi2KOTQbY3xQUCweTvQdZX94w8+O5YUfCJlddeT70/eWKKv2KH9yRV7UUi64xVvKfPOp2WYWkXeKlu+z0PzazH/8JHHgAAwP+vtQUnOZUcUqg7myYmt6Fc6NLv+r/zr/Hf9f9xgUCw4Evl5K8VpxZWLdEbleLSpcjytkFRplnq2F7NMl+ezsjqEfm2cE/Y4LQPcjM1gxvOGyvUhLjWPO44PuyiX0ymaGrOcZPUJ+2BH1W7O1XO3P38xvrhSdpSwy8vmTNqnH+Jb+HXyr7dw3Msbpcv6JT4uGPu1aCAknWTJgVlW8Zb+z00vDyr7Lv+DHdLNfkNL8bFtMVURIucf3xL9rPxgNQ3upFNl57u6Rl0ddjY784Xd+5WzrxvdOyFQsSjY+dtdXM+vHptq7os55ik3lxNpZv5qx93OS4b1dDTU7hlt/CdvL5yU0Ia9pSqDZTzblspZD5uan5o7qimbX2bPnT7Od/Jo1+3Bcdqr6XLresiPSgiQ+y6xwNhyTLd/IALVZbaO6zC5lq3DjnTWBNY9Op7/JRpyvXHokQyZq9V9M5sHtE6eKXCd+fj9x/2fzb9Z32xqfm3BWKRbjnlS290+lTp8PPLMJ2U2S+FVqu5B0dtXS7fKbxEIr158bp1a6pWrY5JLtk3LsE1JTbFcrFY9fCu9tkJ6oOaK7bsrF+UcrI9e/uZHQUhsfcsqmM3er67drTK2qjTy6CDBbXeKXPso9KWbXUpemir43vIxdqu2vbiHYvS3J76nssbw+pHOm1dKDfcoeaDw/VVbqcWNU/3Kb0xqPjT1uTnazPOpO2POiq4IvdUtZ9zyrEttstObJ/qtPOE5W5Dq7Nft+jsDbwd9/XcyRRjGWk9r3cdCYskpa+KjqoYKrZJw3jOqA8zGnsYSvSUNv7uU79c/Y3dWuXXc09L93sQpjTD8tH0c9lXvyhcuCQyutOOs+ry0TI/wrvnRCkKXnSM7/rA7tnMLzHyZ9XM20XkvUUnzwg3biyfFeF1MSPweNQtgxpVFYWSuavWxFRKrVYJLe59dupRwfoVAW0ahdc6FCM7tcXOUL6WqLS39F1gL/f+cmrlet1fFIg6zXrj6yyzp7rOPS/j8PUnvWacXeeaZj/XWCdhm/KB56XGfXqfSrHsFuVZPG7A5/G3vyWMnJC4583xNT+tZbzW5cl5LKhyTHkrmPJprt3oznHOQ3cENBjJz5vR64OricXz5MzCE01L9wwdKWl3+layr9/E+meFInv3P88vPZQXtnCX+DC1Ys/7JXnqd9U326+Qke94ZfPRXzRMt0vPh1OqZvd/KiZS1EtTWG724AfTpyyzKKyqueD9PEcks7nu3E+HAQb55ybYWMy4V23kK5X89WGw9kKLNUcfvpAV+nrgmMWyd/HfYm/Ovu+7UfjE6vdTO/aVFpg8i5NxbRwzQ9LruqPqgmCbEV4+wWvXqDo1iV2K1qk+esi0V46pW4K92UXbXR5mXV+bPbr7dLXS7MKtJ2SD5743eOfe451awDcHqa8P21WFdPJET5ydtVhq5LUXV/eqtV7YstUg2HzoG2UHvYChTf59IvcoesacS6oTEyRpbJ32JqrZd7hRP0e7m1MsHvQ9UPM4+vKtHe8Gb7dr7Db5yEXPwPuTxzR3PZga4T/54+CIWuFOtw/O3mXp394kcVr/6bCv5t6xC1WM7i4LdNctuzpUakHA1i9Jceb1y93jJs8TeF8d5DKm77FpBtNe/6is7KjrPm6IkbSGxKkZa3UWV62tt5Hbu9Hz6CDxoTlnNs4MjtpS2PvCxA6hLqrG91u27jn35qbK8vmLTpXXKdo07Ot+bk1h5rOQ8AFiH7UaunTdMK4pefg4jTkRvkcLg0KebdBIqKuN6auf/S7kro1Ka3jIa2ufu8nBm611gtKjnpnlKVcd9zEaPKHjpvGWsVomq8wdj5pYZTZrbahTeq4jlZUrF3d2ZC8bpbYr5be1tY0fN2uX10W/tT2w7LNNicS8dZd7XZ46+9K38et7VDc6F86T2a3RVf2L/R2R+x2GWcab4/s6T5lnNObMy773gkbc1Ny/W2LWCces3rdfXpryfF24hdjY4f/ixwEAAAD+iwt4YR93e2/d9K1Dh0UlmQ4v/l3///5Xsr+v/5VKlpiGVZYtXlIhu6ejwWTVNb19QkEjgt+fGjp2XsWDH68X+ontvTysWbvqSWWvE9Xxmtrfpp/tnB76JfRQ8A6tN0l2pyzN7xeY2sV1ijMJurjnWKDBwADfmeJNnUrdfctSYydu7W99N7v1XEDIkxzL6doFbxu0FD9nKxifOlF8vMnEqrJu5I+C8r2utyK+3j0fMLtqbMCjiI0VmtFdp3ZPN/wh9cxySJDmsZnmU66PmnAwvnDE6Cbp8Iu9Z2xZ5W09Z06fQi2RzOzzKl2OrpgqlT/ryoYxIfcCbvj1f7nKquxW0grJy+stzqflvZ/SOXOwzNu6ssSFr036qq5tPjymZPr4z+GnLhT9HBjnP2ahlUFk2UyJ9lCdlB0GidPUO5kubf4in51rtiTY5Z5TaJOHt7Ca/KH9Yk0ffmyxqTfRUC17ZLKsb/Z7h7mXH6TMmN7P487Jgg+XtB88bBk6YuvQ+E5fV6dV+ei4RJzSbjcXLJ0e+TohPW/vjv5rf9R3OVTQGrP55d0vyfkTzYXW/pi146pnx4Xim9mB8Vt2j7dMlh201cAqKSk0vdy852d3U//bvuOTukvP2lmfEVi8Lvhamv8gFxeTH2Ms9NzKXy1ybbyb/PKnz7jVu4VnP2y5VHXW3HpRaryJzqcnvXu75b38qrB8wdTzQ1vl3KZkaCTXezhnd9N//tLspl70ogLvXopNqtLDnzl13lrYeLjO6tM9rSafZ5ZaPi927945uKpauXKn67q6Y7uX2TWoJEffnTAqaODoQNuiKQrvHl8YLy2Vclj950NxjWOVSxf4rIgvvpd6fEaka/MmJ4fyJUsy12oOtd577FF5+Hb1zNacHnKJEUfTFro2msQWyoqvUpyas+OHX6cU5aaZOuan23OujGjIbJvXZCK60yLc4KSv971Xux1fuU1O3ny8JaHa58iaU2Pi749XnvEmd1Ct/5xjIl6HV70dbl3ZusWo2LPnm+8d04UUIuQ/DO2a+bYoS+Vwc9rqB0lhzuucbhvazVF/F6Me47z6yNQfJms2x5jPvGu26kRp3cZtY4U3p9z+vnFljU9WtOlt7TenWvoUPv88OXvb7p0/fGMC9XeLdQl7lnw4fMWivddSCgLjN7UUlky2GChZetZr4tDqZZpSy0Z8WthZwbbfqb1tS8sO909TP+Amqm0jatHXKbeh/Xmw782zVacyhilozond0TUpw/yuW1zBR891IkPm+Uyz82h9tELFd31OQqym3JiCLyurEq7deZeTFiQ/cs+LQd6bD4+V33VqfvCjqndr5vWeK5Wl9jzlx0OrMpNCV5d+BWNW7jd3MQx4ISExp9sh38HqC3LnaOWMG3HTxTtLZUVITJBkw3ltH4dThUvOPFuVozxJO6HQeHjH4x8l0jYWEWYTvdNq+jiWWrxc2By4wSbKpTw3e4v2mzkxPySmaQxfbGj4Ncxl1u6x7/fPHKqf73fIZrBj0PaXY+bY57/3XVz6NdLUafj2WfGDdU6MienZqz5gk3C7+aZjMxxUXVcOKs/y9fgY7ib8RL1qqXtGl2s37ATfe1W1uJ4VmAfcz3JYvMI/M0b5U2x6kUSI7wmh+onvU5Vk371ceUAx0TvK9cbtlhMdji73bWR6zr0TOSFk1/lRdYkH5WbXBwYe+rSo6PM3f1m1axE/og82qS8Q2nh8dU/zPm/sr1oGTLRZrnw3NvOq8Vq9EZZD80Pm3Wld9ezhW889lukCna8PnO/u8plVOtthjlqSw+K6ZboyMTtWNzprfioRyVo2tL+976zItNtrJ28NP1T9QviYeGLq9ckOLUVbbnwsGK626VJFW5n90NOjtklVOcVPmNbVM/hl10MfZ/Q5GLfkWuTAaccnJHcRinuydcTYyS/XHtEzV4w6dNYo08XD70vIqtAvl8pjqnqqjhy/dEdcVOn2bHOvzZsinSf7jdC7V2T5L34cAAAA4L+4LrWT53iN/2m8oXvTi3WDkmb+rv+lfo3/rv+lhQSCC5uW3l9SHfXueGbiksh61QLXWsfPXof75Lq+kzB5Lv78zu4VAaHqm2JdPg7YWxejXDCvW2jA3lDdZxY7jubvSZtwYPSmkSNe9wneuqtqh26php1FapT4luK6oz2KboruLxP3tRimZNahmqJ25OexyL1P9tUozr8Tfc6/dM7ScjEHl+I1Sulp8ROHt6TdW9mgLK2ivWLfi+lxKoPMS3NbUmYKV3ZZ1VNKccuZzU+fD4xt+eqV8zHnRJecXBFbzyl9+id9Ox0U0zHa4Mesu2Jvdw683jxg5cjL0tu2D5E4O7/wwJ38k48aD47xbij7PGVCxUylOS8954157rLqy1yLRTIfPirsue7W+8FemeJ3Kyz6vB+Q9fZeXn6I3ZEzq9wPDx7i3aFcJmnYFtS/U5T8WI1FibkfXw4b0MXJIX3ucq+nJ4o366ps2d10cFfkwf6b+u0Jd404IL50jvI2idLUk6KlM87bWtpIrziYJyJiqH26Mv/njnn1VrLx+1rCrnUbV1XU421cwAPVnS69O3sJng7Y3dtv06ex6TP9Fp6SF8p7pKL81kzi+De1p4cbtKtND/jeEFg0vLuvcPRQ34xYHc/90VqyI441evhX2EZ+MtqyRr6zTP3MmQvE+h2UX5u1JdDytfeg1G5nIjpPOHEoTcZmkeTE4yVyhqMzFCvfxOcG7Uh83Mt7+qkpcywzaurEMhJaZvR+5dGt96d+wQ0FSqI9Sq9afhoYVyNxuueoftuT0lfsTIyRflqSfMOhKHRcscAtRnnB8YMhOh/7i7qvXdpavtN4+tB+SqmKH5c1HZesvvbi+sixkW+S7hsHuo7Lq4v8dGi3zLIBiY0lA+VvjB42bdacyZdklw+Vnnop62SE/UxB3rJO6daV1ou87a/lGJxXOB0fNGL+2mDb+nC9oqwe8RFzxhSsf+CstvZNVznVqqD+7gb7yq3737e0PuOdrlx65+bNUfP7351hoBdvdLG6UEy888OXy0zSDugFRZ2YrrdX1KNzXoDBPuHZO62O7FT46RRqJ6zadU7JDf8N/TaqLx3b/iq65PSysstmUmadbYa4RI14YNyhaW5xb/+n1T7v7D+ofDFMPrs1TTDoscSr0+E73Ef1UH6/4nirxL2DJUWz1J8+WPHasTowXVVvjG2VoFZh8Ymu3kn7zXoFH1rYujN4ddMwz6r52uPMMnMHaVx3WezQHiL0effyGpkeY1SmhSWeMiv+tuXhhki9WtEeKz/eGNx3p3eFw9Qjr5b6Fh9XcotY9biyY963rGVdbl/rnmnS5/GKDt3lEzY0PbBI1lVOi8sPvxT7yVlxpX3CZ4HH/D4zY8vMxq9sjS1LEU4cZmqrN9tWvCYm8lvYa9nwoxONQrqJhbk6/7jezzxl10Kx4NM6Y95nL9y/sCXOL1wuUuNBxiyZsfMtqmT2zFsj6xZqZVu7bVT05EzRl516S2YF9H9fY2Y59tL3mx/vbGmJDb59oVImacHxiuuBFrvTb5YrWz/TCoiKHnRE3ulnH0H4i9yYHrsyv7+YrntreeRVn6gvF7eMCqovPZG5MHFkdV5dZKP8Nc27saP7iPjUyW112Hx9tuLyIa/1XtnUlBaIbrrQp8fap2t77nuv+fab170kU2MTsecr9uhtKXketsw8UcMt5eazQZuPGLZ3cb0hobtqQ/nLzl4pQV4p10q1ztvHJg9Ndelk4JV4MsSpQeZRyBqftWnOPRsvvNYJ2q5StGFWy92dF3Zqx254rhBj//hKhqztvrd7LJY2vPv6Zpq1IKLvlltn0iOPjF2Q4ezX681EBc/GA2dr3zVbzhvgaBXW71KNU9Tn2h3v/OcdP3d42q7UOsleC4TNer+qaTqs0zJEZMKZdcNMKiPsDAO2CSvtG9mSGOBRXGa2q/nTiDW7FaVma615sebtM5lNPWTHvb11esE2GZUvJVGpD3endgxYEz3iU1Oi44ZZS9z262dNS7/Sxytwrq7fntxXtY8Cdl152NNz47ykpPrZhxbZVL8aLjNyy6CkVUkvt42fXFb/xMZv9fK2hcNEZZWVe37XHH3g+rYXih4/lgb4XL/y1tDVpOzMm9hqRxWFsTMWCB8+9Kz9RojNShu1Dc0KCUraNU8TlihL9ig2ndt8Z+rU6uZ+FXEayuvzTooUhLmd0V9iMuu8zMtTd11HX9Dv2nn8mMUByxevmHvWVv1hiHNaTN0FictHbpj4OZVOSnZtevNGw124s3LXpPW1+Z6iH2rGd2hJ1MgG6z19EbHuk8p55SF7OpZl+A/e06fGaO702Bf10YcU+pd+Uw2xXp589JTVoe1asTMtHqXdjB14oCZ66pOqsPklZ6PuVtT1zpSdcVnP/0Gq9/QaywcD2kp6tQ98XaDjvmVT+4GDe95vfb/XP0u6QlxP7UjB/TSV5jOWXzsujjrvMal2nuvVc9E9vhaM7/p+SWJhocNH23O7XGQsIt/tClq1fv7BH7eE0zPOfP9u3f3tmoenNC2aFtqE9TveKb677dDlnvPSHeNfzUrp5FIZcCktQWNJoNtdjbGmtq0dy5r0lyQOfCbjvfnVD4WOrmUHtkW9Czt/YVzm3qseiu4i9294bxt7Krj0wz2xxt3bfBUtDG+o+fxY1vQ95XJXA0+fq+HNszrLbzf61uNysPazgD4nMxe8nizmca+HZoOaxUzFI9ny5VVLHY5vG1XZd9Om+0qrxqqnB7zXW3kpNXzVQUPj75mqpwvWO+34JJd+8OXg1P4/y4VrRk4ZpuN1QTN6oM9K5T6Vdb1WJcqNWHzDSjO/cPRC04PSUg9ag7NWf8w9rjrDzlO/waEg28hlpuT+/XP8szavj4za6HHNbrH4jolHfZR61XbzfPP5UGz4qTO6ObWrXh2WOFr9IDQr2XyYtN2ga3HLhxVaHYnv0qezlsjJXcWvMy1XlL1sTNYdf7xgqKnu7g2bh687aWj0PfjMjaLFklsGutnplqypDq3yPjy0YdXLmOl7Zgx51HwlfPS5KdMy5BZcyqoNCvELmDXgsdbPjUJC8zr/CFx6qtPeidF+JkERnfPkX3t0/pRZmW+lO3FymsGTWPlzW2xUnp82/Bf/XAIA4L+ED3nbS6216rqF7fd1WrFW9vbv+r/Lr/Hf9X++QCB4+tNgpuwJN6WRSUIDlh2amjQ+zP1J14dZrUoDHs36dqpg/MPjvfV6fNM577pqTdCBxJFJOzs7bne8aDD5/LTI1fkeDV/DbGxPRfsl7qnrZqgwYruco1He/JoBIRucZsvM7OI7avBN6y+b6mW+d0x3sr9Uvi7TQu/sYH/p5h0lqz2M7YTlOrZ73tHLd9xcmjQ8M3r/cMcZsrNXiziJLv3kEiOxU6fN2OvMLvuhFuOsLnu77Uz+fjBFqiHnZdaszsfVnrzoOJbV3WpxavogUy819biFuj9MN60/Je9dodtH0rRi6rDSg3sV/f0jZWO3zB+545z2w+ym9RdfbfjcUH4h+VKnWgvByLIao+j7uoG5sz07r6k/OPZjprSxRGmKSJhzunZ61NiZTSc13/VoODm6b+jgnhHnrmgdWtHzRuHFMbtMcyeHrSkaLiUam3JRa2Pl5WiZe9lmA2ZF1h6wmfP1QtJcZ32Vqu7Vn/PzrFfrFR1qGXrVwHXE6zUpQ9sbvh9+UREoYTF4l+3JfYfj/Qy2KVit3nUs2tzXdk5slbl6/xqzKwOGFwfcFvGp+eRm9/a2bnJZfLDoqLy+bq7rW86fnbfrruqT9z/PrQ1IfW/ScKNi95I1S2+/7tOyc/2iRzLL77/c43jOQdd0mX/6Kb99SyqmBIoOXChlPHz7mvH9t2XJ6a12X6DdQ3h+gae9esiwftWGAz0WPl6k8eDI2HfNFTN2qD95te7Mmgot87cO/Yw7v5GMHL9Iq/h4autw8/G6X0beK/gyOyDe7Jlm5rZRh03Oj/12X3Aw+vzNKc+T9PM9/G5Njnq/TP/n1OJPyQpZcbdHih+oEfs5V9Mgf8vJlfOvyX8MGf2x5VGJ5Sm7kGqdTh2CU92U9DaeWS6mdO9FQkLupP1eeQ46t5PORJ5an+JpH/H10lO9btVHV14xl1YqeBre+nP29l3bXd5qnVvj+Hn9a/MR97qPC//RNGSvi7Wc0bB9sfM8Htckty+UXN3T7MITk/FuYa+dK3qH33LqOOzZ54N5+6uz2nceHWsqESz6/FDrm8+EYJP6Sx/qbbpLGgbMn6N159WynjYReS7FbaeL5E8um3NZMle80tutx+N5W0XefwwVWZneuO3LPt2YZe/mDTO6OEXd2nV9xo2ElbVnZdfv8XjaWFk5yft9/COvMzc3GIxWaIg767Mt5v5NM6nTG2Ivy28qinnnv1dS7OHYiivKSZrh43TMdee5rXfeED7NPmD7nO/pzlrvnEzaDN1t9E4+y6iakuZ3dUXS1is99BbnGnafWjkq02nMzVtiTxbfiVx45/KaAToe4t8CBhU+2LGxbGJl6eAj75/0HDjsjpmqtV73pZ/6HE5VL5u2z2+SldmAFrOcGw7Oc1XMun6eZawcOq9pzONP96dp28492bdzU9bLFwpJCqt05q04NC/V1Gp/5iORtyKea3zaEuJHbh5wOfrCj61NJ7YH1GpYJvYad3Dq5KIOD0PnU0fW9vkxtsT9UPBITQPfto/ZFgvzHPtXN6dMcrfLWVspYZmqZD38qLJavEyXAq9dufPXe8SnphodePpgwywl9Xttz0q6XvM5P7q4q1bDlgPjBqxdndvrrKxG8hSje04HZvgdOPB62lrJ4UOuK9d7P23er2+bU+d4pvJzuoRApLn38msGxs/VcheFTH6+tnlDgl9jZVB83Qhroyni3y8aX9rzztCw03DdnQqKTrc+zEy9aNtPc2JAp66RlWEKOrkeDyr0t7yvnOY93Sekj6VgaN3yU4L+dfLx919ecborJOk1uDBqpM3FondTvDWG3YmQfOqcsK+wIyxfTaTWbkFmV2WJfSc/pzrUbf8uektId2sf+cGDTgf6CPX64rNZM6XvjrbKSQYFhk7ZMRlPY0O2q3rsEMw7qN9/WP95c7zynS4KfDWSvsjIzh+pdnRoq7Xzp9sufte7bRtzYePr7oqq7Tllu+xHCjn02F9i8N2ialiSbNPXuRseeOqFX84cohC95saEwp6zO80q75O/+LOYiPgRd6Xofq1NI8L6XDo46LP8m+Gne94YlWA52DOvxsZqmuLiqqjwJ1av75qNvbdXMmzko+vmEs9/djt65YXHrevCR78/bZqYWNToXnX+xoxPmyM6+zZ27L43TVAsNa24IcQu/Ep+v5XFZiKKzcq+1nU3+k1YMP9I51M3taMj5ij0vHnJe6TB1Rp7m1R5lzMhR3J9/sWPMwAAAPwTY9xX2jh9ENptHeJr0l1N+Ovv+r/rr/Hf////dYFAcGhlVNPitjfdt6k7lWWd8R82dcVuS0X55hVfSwKCr/b20FTpEVbkJud1uThDw3ve7jl7JLUXZKoamyiKbDqc0meVQ0fKYPvTvWvt9OpSur5abavn8ObaUd2OJXbrW+QuSQ0YWBe/SeqI6fmiLZF5j4XvOhUlXPseW208/8A17dDIsvbHb549iYz6URu2yOZulyrpnJnOTYOdj6gIql4JPqgnf89132T7YdO7pJuPe0lNVRk0duPOg+bPq+p6plkX3hE4brq6Yl/6pzQPY7Hv79UNAi5Ln7qgcijRPfhWj8xo5yMr1ijpntH5vPxn8+TwRy9OxBh07yToFl46N95tzPelXhWh1d12PN9+Mzal34VZaW0zKpY7zsya13/BsfScsurU6aHdHUabNs2dUHbmZt6ekuVeUWqXe2WE76zMXTtKMXj3+jkx9wYnpffdYxK2v2Kb5Y7nif1UwpLaHrS6RLjM3/BWrGVm+QwDSduxRqvbXvXSktVY2do0duGcS5rDDisNOiCYeVQ+PGzpaJ2J19qrxd9uXp+9Ssx405LhN17fuue0vZeR0J1Gp4KD+wLcC7dpTQxefG/6vmldSwrPL/Y0Hz7GOuVE1Y7pGjM2is2IPqPb7+HXxzN/Hp93NbvyivPiMs+LIdsjYod720Z800zxCf1c0OZ7uFhl0NwD6+y76V7bu8n04KD9LS9Fdd2qneYfy3vomDOnsWvahl02mTFXYiLvNauG/rz6vT3Q8kHcE/H17jN3aBZmykoP3Oqt8uH5U7fl+n4hlzutzeyYZWgmHi0I6NSirlF+Zqq4c9O3PYlH0kf8vHRW6Pbw4lt1HhKqdxSPSy2SklfW6H+4/EyEapSfUOI0kZwTpvMn27y+Z5Sb8qF0d1GA36EU4yG9nfzz8zTXtj6cq9zqNXDk/S7aWi4uxptFzyuFVo8Wf3q/9fAMo5srjeeMWKm0euHxD1o/p9XnzP5UEXdGOy1zXHMvpRLnwkPi2apXn8ubRI20zl6wuf/KuQaBG7KPLpFVL7ON/DZARSUg111jX3m84ubrnhHb5wmZFYm3fBkRadQr0ivLNjA92k6u7VFbhliDfquXt4K55glXn5SnI3J7me8v21R3a8SXmgu1luoR7+6rzSg2/rQyJ0fpwtb6dc0B8TcS215r7W7c9qBol2lFnXpzYni/0f0je1W3hI+f2+3C1XtqC6NylynKKK5MOfHgoExSxIqeac8WpekferzVqOyLX/XY60Grqkev3aFs1a0gd93GoX4Wt2T0pGd7D8i5HxEwecIuv/lvxt0IKdx8bFx9stXVy5c/5fXrtFZtwRDPz7tq042cpILnvwqKzxnfKeZHfKtF1zJtp8pnbinvhU0V+xpNj5X50PlxzRS/TVKHGx9eDP0q/PBdhVdF1KptAYmGs6rWKGvJtQ53Mxth4uMrHBJ75LWqsYfJw4ypsg2fpDWMpHVz/cNbDntrq38N/GBzpHz64qx+WoG9O6wUptq/HWJf4trtnIdXoHyXgy5nth99ufdcxRKxtpDpIXG1aTL3R0SaTfK8u3TQ+JCby2xuSKqduv7qVeCsGqcKj9Gfj4du6dEolfyk/MJobcnAvQunZnbExA0Yn1rsNnNIf81rIy+2WZ0dJts4MW3Kp/pvL2/Gn9qlfq6k7+FJpQd9xD/v6rHbYaxz+6OpfdtXtIhstErOTrJ39Fj8SL0+6fW9BMc9IU27feLqXx58auN0J6/ecES9jm2sZGNF91rp8S52VYs71Ru0dIgLBGdkDGXjd1ZFyRVrDvEPy05/ukmy77XHx7IOxKgHmR6za5edu6zyWIG76bIljgvDhipn/rxbVHZiyMYpZdMua4fIRw36aNy3vSV5Q+Iy760xcVdmhtibtjrU74rYv/VV4NH8YdHFnad3H+5w+Kp1QKb2atfktRut3fTWBWu5Nhcs256t0m3Ss8drdFRGb+9vtGK2zmTZtwssJ+5T3T1AUFvhVCkTptE8uVy7y80bSeunmr6LehkwTOTBli4yz5PGTJjYvFK4otB/mGV79YhUhxFNu+8s1A+1O9wv3cCpNOvSjgRL0ylndsUI8kKXnR/TuC3AelGW16tozcN7fpZejowdpu+9qtuq1uZFKw4o5M9arWizSam7iUcP2erI6cI6fa8o9hbN0be4lrlq2DzpzB/7/BQbLle2SSlenhEbeeTY/Z077wdZKm+s+vB459yXMmWL7TV7FYtG/YsfawAAAPgTniNOSr5UiHnys6f3lDVb2/5W/4v8GlcU/Ef9HyEQCMSNVxsmbixaNVV1nKlQW/KoVl238j0ew/VDTFz83L13/ygZvOeLk7eqmMjGl2fyUtKM4hcaiG8cINqoukdo29stPY4k3boWLyp1coKEf9AApeTu0v0+W6SI/7iyauo6C+15BdaPTsVNqVrywmts76KWxiuRSqI/5DzPvvu5J2JxjWJWeu89Hd2K7PqMsLQ3q968oyg4NLVLH3G7mqI64d6jxm0btGjG4Q2dZRXMVt+cMCRn/8uM3A6frYGD9xmMybi36eg0I/1okb0uM18sDerv3+JU+aDBt2GS29YfofY5e4cH2b/ZIXN7ebT8Uc1rfafG3vje7v+18/5nmlHrkzJCpvvLGTwXyVOSHZJr8nRLQtB65znr5sgFp5rtv2he1PpVqqnO7vGbVaElu+O0ZS2D2+qKnqw+tnDRzZkDozssU0f6TTk+SddA9ExK1wi1+EtvXbrcDsjvPLib28rY0k1WrvP1X6nOf+8xw+9TdIdvyLSGovtxPk2jvvi6Hiu2mr6sbZmYxeeXqWLFvYW7Djk97omKjZxV3pSNfcZfMnl+8aRH6kp3+7n3lqeb5zisUpDrX957qYuK13jfy9tqiuWmFHTyqt7sOaN151Hpq9X9xV4PtT0YfuPkglkiJ2WvrZ5lt0ovb2lt5TqLqJXnS0ybTI1ERMeU1BnVDj6Tk7VxZfjc0Qf7fEi5qPI4Qlp84hbpmgc1LbFrjQsas4Qrg50Ns2f+yC3t8nawqXyGeWLNa9tR3cbNTChfXftO+UrlfbdpU/beSHf8kiPmO7RCIda+NaHfuMHnU1cnNk38Hr+ixXSoxvPAt2NfvLusOkAi0iHOfpn0rqkv9JNSQrdtb0refEcsVeFSie/dx5vXmKgsK4qafLTknkex7cmKL7EjT+RnetgL9bVf0O9KQUJsRab2hK5lJ7+arby5vr1tW2gX7VUTFhwK3Svr+/yox3o3j2itG9JrvHVDzGoe3Lr0+cKt/PF37J1m7VP0ksy6t+VS79FHs0zODo6YGpDaf6BV4birPgaWe6/dmT1F9f6ntqOWA/q9vrN2h45llfDe9rmD1Uauez29ZmdJRPl91YxXh14MO51k7/tl/FetmdGx492S1cTGDDe5p6/hoZ8jp7fZxCMtfnHDgQ2nzDfus92nETNd4YLe+C+PbJvV5jt4dLWcVjho81b3dutRExbaigem+BgsV9P9VnI8TytBSVn6tJaB4XOzO4sV5GY+7az7UsE3+sbhdukoGZuKwICYkYpeDb5aT3KtHrc+jz96LnVURtQXHcV8Swu1jGz3nE9OErunu689FjfS4PVLnXlDDs2+G17ttCW+38GsaetePVJ5/ehe6mnpq2Uxtetqc95blx5vfdgvdVUPuY7qUUdcHjU1zva4+XlM4qSuSYapplcOfzXJWRitL+3wJepnvY2HyNEvHTIjy1SjI7y6qx3u7u98r7iL4/f+j6R2aPaf0e31md47DVYVSCjVuN3xah1Wmvd4dmT5jMo7/o9ftH1ckjJpY1iPF7elz5yfkphzKvDxx6r41glf3HbOMvhye2WsVEZQ1/ttz6fa5swuGxtUENGYp7ggs+f/cLES/7+yJAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/yuJiyr+e3tzy9qv5r2nFAUu+bJpavbKzccuDirfnWkyf7NZ03fL4JIb2acPyD6JNp6c1mbxseLKtY5/GizzH83QX10JgUDoi5BAEGy08GvIjds9/22bkEAgEBGSCRAIZIXkbsgK/SFB+5tAIFj8t3n+58GsL7pL/63dHCH+n7ZL/yHkj8clkBL5PZ//NE+B9z89Ivx/kMSv+0xY90rIm2STjHMmE77Wrj03JuC/vUXo395z8df9JBB0W/THzwv/g1wnZ9ehQ1cs8Tk4LK1m4fuermmJ063U7exPduk8f3+Yd7ROUuhLa0eNdEkxgUDQ+dfr3/y+WxV/7/xXO0sgEEj+Xb7BPzmuAf+Txz/8T/pKv9pOv1qpf5Lze1zlD/0/nps/fol/E/tD2/Wf7O9/1z+6Zv/In833f1WX/0O5/yzv93H+XsYu/WqH/i/mi/x+CQmEhQSif9udm9B/u0cEf3fdhARC/34tJf7WF/73vvDfzVfsP89f6A994T/0RcT+cFz/vt9fN5qIkNB/3v77fX/Y/vs8iP7arvL3a/0/YPUn23v9aiV+fVFbf/cFf/zjP0j9d3/87bj+3e95ffwfzOX/BuG/W4P+0fa/XfhfF0Pq1zYpIbn/7jMd/8DvMVGtLvEhMqLmMn8yD6EzQr/yhf5SvnCn5vw5E5SHKv5Z/iLhX/nCfylf3yFko+fdTYP/ND/yd77IX8p/ffzIG1fF0D5/en4+/j4/on8pX21k/60SJYqK6n+Wf+B3vsRfyh/8LrUppySw/E/nr/37/HT+S/luH7u6rDzg/uhP8wW/8yX/Uv74iFrXCUdfxPxp/rXf50fqL+Vnxpu/Eje7fkH7z/Lv/c7v+pfyNQPVvptsMRn7p/fnhN/nR+Yv5cvMdHd+ukIk8M/WTqGA/9knLADgH5H/9Rsr9Ff/r9ap/7v+rl6IkxH6j998XX69/k/Wav+2n27/B/MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4dduwrS+t6/Bf0CjRM00Li7OwnuENwluLsFd7dgwR2CBdcgwd1p3N0hSHCCM1VTO/enps5Mzuz/81z2uvl8169vVtULAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/J9h3q4jd08deHQ4Qv8tvS53aJig7s6tHZ4+rh5S/+vo/jXnzh4SblHbDxObjPruSZ4yzUvGerl12bOXNToMOPHN2QpXokTt0+lZtLNnI0xOPzDFypnTLz9csaJlhlMxu6Rd8uvthyfDpb7+2+pCbaMML9oszuQS8+YtG1N4W/U9aTL+HO1C618jn5kXvv2RoAY9jzas2ivmmmFR0uRKPCzC8bhx/7krKBAIxP13qwEAAID/Go2e5JkxfGSpft2+xq8y4HO77f/s8ND/yYMCEQJxA91Dfdm9fnLPOI27nR/2d8MEIevH9e0coVepSZuOrav0TYThq+ZcXNIpdoYob8deSvrqt7Klptfu3TfT2DWbGm2ovHj02z4/XJ22O0WR7LEvp0hf89nn8oMmjw1ffdjPC1Mtv3LmUuqVQ7un771mScxtpxMW3XpzTOVTwZ2DB9xtt7fm1om3KhQt+ep99U7H9j0odyND9dLdKi1rkaDbX0XTlW29MuLs9aOu1ojYKVb87z5uzb21RcGXjzekLpisQKUF/XJl29tg2rhrQ86EnN14rdyi8dECy37dUbPi690NMs7e2b1z+t//bLIuXZhlOcsfbR8qf+jbHcpErpKy/afS2T8ezJynW7oTLXsUG5Qy1fL5c3MfGNUuVr16gdtVQrqOeBM+X+vZgyMcn9J2Xbxbs8K1mpZgWLolGeJGW1E4YuWQTw2H5N3famODYTPSPKl1bmy9EtOz/lQ3+h8Lb1cMtE/apd6Kaetn3V11deDZ3AVCbZiSNH3bmg0v3J76W4ozmVfkKPz0foMXBc//cf5A1tsrihZaFDPs2cI5Ey/NGDF91seR7iV4tOHPj/V6nd53YU7VsUsPL997a1X4dWlm/FZhYsz8Nf/8Y1OzabVPLGgYZV7CRSeLtCx7o/+NiPWTD30z5uqUpmHDxt4ZuduQDQ2qjluQ7+aH1dl6ZMn9y4yU0zNmr3I3YrwilX89WKdF133B68OFWhShyMKrTYrcftDxt+C0zUs1WFH53dh+u2Ne6bchRpuHKzc+yLh9etQTO1YuPpTvXof4NRMWul4iTMYXl0v+ljJ/hwRdfuw69I+8lzuHjfLmz1FrQ95cKbPsTcSx2WYFel7OMuZZpehF+iwZXHTs8bVBY/NMHbAxeenJpfbMaTKlRqLaFz6PWPuufb7LH2dUnplvU76B+cYu3TSwUO8ig+plPnAo+omIJ37dF1ymbLcOp9dOf/33miJ/fd+gcOa2k8tvzHvzm13he8zOnbfy6uafi6xtUTvUwRTZuq4p+fTej88f1xk0fvLC8R3CrB45tHrSjk9mTfuj2bVtmWdNW7Qu1KNepbpdjHpoanCi/CfiN+685cdOfW+ViXyoSel3P3Q7WeL1rWRr3ieu3Sja9byd039fONqbGdnvvfu7/+TLN08Obl17/NJR+/IumXbn7bl+VU+0qpSy0NGwmcb9/H3+j6XS/h62Q4L7M9OUDpN5wrpir7u8/yNunmZT6tScPaVgSIWRUxKPGXW+wO3Jg/alDqn4+5yUn9MNu1UzJH7KIVXjBRbnrF5mVPlwq8I1Lfw6Y86ssX+KWSLsgLpjcybZ0qzyzgK1Svc63L/LrDpbzmUrEXLmUL6aWybv+pzsUuxOiYKLD0iycEzW1a9m5i4Sv1boenv2bvhhQJMf80cvt+BY3aXZwkePc6NYyPsSR7f379x8WpgFqc+XSLxp8tnEHUpk2t3t2aH4WQ/ti33tQbtwgUCg9LiTwT/eST585+K+eUYcLfg5StMsD1sMXLusQ5TIjyJ2rVwsTLTgz3dOtRl9YUCTzmM+H/621IY7Az/1nX6r/Lc3cr8bk3Dqo1nVWmWO9iTS+sx1j//49tLpI3OudWuSZM2Ia+UW56tzInzqZAWe7UgddOLAsRLb737Z9XFqxuOrG2QoN23Cr1Xq7/6Qf+ay1DFzvB80unPfzJdXJT/U/pu9earU6/ayyIc5Nw7PTnj39J+DB/RKEiNN180xOi3+I0nuGZmb3D+W46/i4b4mrHroWdfnx5dVm/H8xrRrzx/nqhW0/Xi+7M/DRaoYZ23hvwsufbblZvmCNfa/D/o1xY7Mv54dF3N93NO1Y92eV7t1UKKj0wrfSRr0de/okILRDv64dk2KifEq/zJiUeoTs+N/Sbh2eLbdt178VDG467huVcqHPK26LdXm30P+rHGtbeYsQVe3XjoY64c2VYteP9jv/sgo2wtvrJTpw/hKIbX++nnLg97BWcoWqvLDsUWt23U6ULj+L012l1jfM2qUXhFmHkhRpN+apP0ONMjS+F2XGhuLRK04Z9LoDbtCP3g8LGH1QLrae+ofGhJn6vDpweWrTRo4OcW75p/6tFzVb2e3wwkODT/089aQzWuWz886NtPaGfWO5Lj5OsrmD4sOJ8p/N+vLaR2ilRvVt9zv6R5UjhStUqURVRJH65CrZOZNR8LNnnI2Wa6fIj8Z1ypXo7+6zN688/zx6PVHLVi3+0C4Qj92/e5x7jDpIj8/UmnB5D3nH0378cI3C/oOXt05SuHAxZzNltX4XKhw0SPZFgUWPjm7MeqDn069iVSrz/p4hd+MLh+/8pp0WTc+qvB0TI7Hx48Hzhcsln7ahuBdHX4pVyN/SJU4ba9dT7Slwt+D031pk7Fh6+PX28Y40WVh9iPjqj18sC1sr/zP0y59U2H02OI3EmW4W2tV7725v8xfvCv0xQxBCU9dqx+2/KFr1WJuarjr3bfp2w/tv75fqYtz0mb9cdmuix/3lGt/InTrWFO2jQ13Ln3IjgTdZ11eEqbv7GXXT0fr902WtUPW/jigy914f77pnWJGhWSpKn0ouPDz5/WdbheOuubPHHVOp5wycmPy+eF6pfhtf5006VZNTfqo1g9fQoV9EbVAizI7s4VcTXr+wdGVg4vWvru47YKbjVt8Ttw03vJ51QptWhHu4tPxExsFPco9pND5GG/iJ+2afMPj0xkunjq573X90RfC5L71LmjFtHKfjvV9+/xq6Uvjc0VPnyVM3kl9w/dJtXlX1unpwhapP714x9Ltts2p1WJsw3sD0lc7nOKXEguun7w/qdSNtLM2vh2U6d2TfX+sXj/tw/HeZ+986FMxWe2C0TInL37/S61U3286umznpobri37ImaPo+6FZt3QtuHRSgwhXIjdYsDTnxl17kheeva7luHqpS655sqxD2ZMTx8ZqXiLXT5urLujXPnKqF7vHbHpW5fLzGTePRT/dOtvrC8cSZQwUrXryz91nvz6OWHNOu0XrtvatmSdPwbVXVgxJEb7ehPilC8VL0mrNpWnJFi5pd/ra/XH9sqzrPH/JT2lqBKaM3XwvXEjalU8Gbhx5pfq8KD1Pl53ZekGhKPfGzrpV6cjbbXP7TTja5P3gDjnr5ji44dcneac9Xbf106C157em+7Bl0J4P1T6ce7VyZ+kJI85XWZblXaEzp0992rdj9paxESOHLZMtT6i33efuSxu8dFWWV63SzIt9/9CUtOfXFXyRalH9GB825gs6t7ZX2LnZT6Sd26P/L7m/hH4b5dvmfRqVidKz3Pd5G745nDD6xurvB5dpW/F260pL45bLNWlDxu9DZwtb+1HhjePj3t8d49Tpek9HPA8Zn6ZW7RSPz6dc0KjTsymNV/9WulnxlUOmx89UI8KEvunO1UzXZtDMmWUbVDgxosqqt0drLN4+rGLTTy2ubkjTu/nmi8Un3h++5XBwzhKPS7R7OuXA6WxfxmeP3+5F6PIZG91qGrJp/cdGi45UWRR8v+Cmwe/H3fwUMuJK/zf1wzTJnDF55kQbVw94OLt7n9iBSkN6rj9xIWmH0x83XS9zcEOnwJGIh4tVyT33YprxoQ7VHZD8l22/Jn18qHWqrMXnTqkfY2Xluvfi/H7yY9pMJ1PcbBv3Us1mT3q2rfy5aJ0wdc9serz5fqkWgb6V7kWZFH5Q1HczdjzKMa7t5V/jPg539E69RzvLJrqa4Hz4QOO18ddverGt4aoBuzpEm51rZ6Bs0aUV4/3+vPvAu0k3b0lzP9LLBfOPtAqpnH9/nITLD708m25MzW+L5xoTY97bujPXLEic5nWrTf1Wjxw1IluNgt8mOlI/w8ASc0o8/2ZY1fhvDpatOfBsv3T3z205nrVx2obrvrlyKP+ZbetPrHoxKUzJfaF2HO+RbWLlodculXiWdM2qas16rjn889Yv32SPtzNW7D11u60psWfBrHhrN/wVquGq5o/vry5b5+SEdufztC5/akCieB3Xha7cseW0BDEWNjjwZkzjAtvmFCwVqfH2Uwvf5Go0+lig1KZZXVumSZQnkGLW1Vw3VxUeE2tl+a5pYqbu2uhynZMZP+aPkO7iX0+z9959c8iqP/54fOuX4bPDVDo7t0XpHA2vx/4lXpoELwc0rNK635G5rTYdnrY09opsh8OUv3NoVuet+77UeFU8XOpBKxukL3vtj3rXOjbr0f7a6Z3B71P8kfZom3g/p994K1m4CldTrEv03dZdh3omTPrb+tb1Oq4NH3px6/cVumR5ca5zlPulIsdLkLT2naE/nZs9ZsmiGx/itqpRc2PDo/dX31jS8eHGuu2yRAj1/bJxV39p26DPqwQVJ307t83pqV2jr81bOcPButWvbe8V9kK9NxXnnm56cH+Gjz0a5d+28NOH6WHHBT9fsrrDirPP6kTKfXRFzuST4q5+OWzwyyfTJvWfMb/Q9j7pZmU/uah58n79Y7072ytq/kYJU+xK3OxdlvwHDxyaduP89iQpM66/FyZRcOZ+szKWnZz62b88L4D/g51tPr72u5YlxmUoV/1T+lYvlv2z/8P+Jw8KRA+ED0ocKDalebWMeWp9SDwre7uh/VbdPFE8+4OiP+Sum3tLnqsDXxZ7FWdGsuB5eabfityhUOdRC8f3mNcjXOXDOXNXnXr6Zrrctfb1Sb67aJtQZ7IlL3Ol4oBTw4eG+dyk/oZBCVeEyVz+YexJMeadCnS7n+DZ1OjD0j1rNf/DtR/nfbuo8a+rdsbfXT59wxe3U7ct2O/xnapJXk0cOP7K5+Ujwg3PG35wmFhvVwy52y7jwmSro5VL8/Ojic2vHCl4tEmbLjF6xcz6rHGCkdGTVJh178rvb6Nmj9AlOHWMK4eOZgmfP+nUytnuDsyS52i09ks+V6h6pPPij42nR5gWp8mfOT9fbxRSa3adMlmSXls98V/+LAAAAPC/1ZNf/+j/c4JzF6tfGj1g7bms9f/Z/xH+kwcF4gbCB0UK9F32tdGxLrEmnDq9I2qev6dNbBuuT4pPleMOuT5rcpwNy59UvlxiY+Jtc0t/LBG31NKPj8+uGFvm5cbW0Wbm/PZr+EAgzLnvVw0O2bLh2dBN/XKfHzO45Izk//KzAQAA4H+UNfFr3Z11pVCWXCkfbV498ei5f/Z/5P/kQYGkgfBB3wa+nX4tyZRtsw9mmzq13N1SI1rfOJ0icbuOGeaOnBNzb/7FxwbO73XjXqihk3fmyTvn1cK4d+IMjt05dI0Mm+KcPB+Ss1uaeCnCVSoSdHXvjuMLjr2+dSpmlT0JBmWJ3bnh47CLarUPtTzL2EHz3uSK/GRivxFhZ6b/qWjE1vP3JW45st+jqjUGl2+Qc9qXezXrt0qyLdPSywXSn2pceGDd5V+HvLjX88KQ19XHpV81KOKvEzb8yzUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/G5T+YWm6GQe+q5Ux9b7S0VPlv1V359YOTx9XD6m0v9Rfd06FfGpcr+uYx7NbZLkV+e3vsf4eN+PxmAyb2+7oU7hG93Ip30zP0jtZ2fZvlm3/cOlilwY32xb4YVGafLsPldsZpljcv9cu+nNEmrmdOm98UWtbgqASvTKGXVL3w4CZ63ZmWn56x8+HdzU7ODfO2Eid5/+66cLT3ycGZYkyc3j0oAr/3BUUCATCB/273QAAAMB/izwvzkfo2+J0gsdnW20b0Cvbu392eNj/5EGBCIHwQTkCR2uMuHT+dqKyVxdfWDPpefqFExMOvZl/fMi5/cEbY1YZlXtDhM8Pz2yK0DT906pDMheaMLbfjabflbp1uVKm02svvYh8JMv0opkjn25w/vr8OGXC92rf8mKB+4VDjYtW6tnWwjO+u5f30o1qGUZ/SjSpZqbnmcOH6d+1cuZVKz+lCO7VMKhqhVmlD4Tq9qbey05zDy+cc+5c/zeX8n+OMDfihSF9d9Yt8/OMFxsaBTefdD3Ouxn9es2J3K/H9mPpZ1z6bWfcQrer3+97Lt5vs+82OR/3SouJCS9PKXCod+via/unTDNq8tY2b97ku9Bu4pgveePfmvBoz9yk1WLGLZS7ROwDg+pX3llzTJIZGU/1TD36YfpAqUComlErBWVNECX581A3Fw8tPqV0wtbbYg7vNyPr6z82T3z/eGTpTJd/OZd1U+vTRT+lP5uu3P0DU/qtSDoyOFvsoVsn7Q+TZeyJASmD0yR+P/pR4ZD9zW7FuxDx/v07L/OcLTD+r/UtB2dPEtyzS5K+j6cO65Upft/NhQv99rr6wCFDZhyJk6l9hAkjizy9l6pouOoHe13oU3ZMvVLfNIx155dJx/OdH10tR/0+Pf6eOKzrv/zvAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/zBDChW6X27Q/iSvCmZMGjfp5BR1d27t8PRx9ZCXu6t1PLNq17lDJb9WTZCwzuRm0Wfv+yneiSo3Jv3VuOzJ1WN3XrtX/8LOKEmqLzpzLuW1BHni7zj2W83RR0tXvRk8ZuyHgydLjcg9vdryIl037E6U/UqT3x+kK96s9JOycaO1DruyXr2xFZv+dm/1xyv7y0RtM3x7rjO1nsctNOphy8JLrk38566gQCAQPujf7QYAAAD+W8zYUy/C7v2FJsYIztv3Q6J8f/+zw8P+Jw8KRAiEDwoT6DW7RIfxe/ak3tSvcMlc4+fP7x7nUMR3q8re/5fPBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/j90evPpDE1mna6782uczxWGXVxWd+fWDk8fVw8Z8lvlhs1TLvzjapsMw7M2zt6kUaPjC9Z9M2BN+2wdB/apXuT6tOuPU6+LsqPoHymjTDv5uW23WvXPppm9sGPVHgvCl8r59HkgQ5n8ZxJE2NtkZOK1Yze1fJwqc8YB405/nlqh5vcJCmaN+WPFImHrtzjeulLEy2Fz1u8Xae7jTTMr3Ahfft/Gf+4KCgQCcf/dagAAAOC/Rqvm4WImmnYq1ry1V1sdeJDi+392eOj/5EGBCIG4gRSB4JTF3j8et/LqpjNZ64Y6c2n5pw2Xrye7UnPW2KffZRiUsdaj4yX+bHW+SqIn4afvPfxy6Ie3e25UCL0v8rxD04NOj1zy04kb6xZ8l3fkkfJfO6x83mTjlSdJa9StP3tu5JCRrRsOvHAxw5iHgx4nvHClccFiG0Ytjp4qzZC2UT42iDxp4zfFto0dMTrvtvxP3yxsXmxpj/qzn9WPcnjT1MStO7brHDFPwxqrFlc70/HPKbkaTHm799PaQf3HlOg6aUf+4Bu3yvfP0TlzjTNLy7UMunHk1uBvv+k7Z02DlJUu5Y225fuRhdJEPzgv2ahhzU7mfFL9r37VBp7rV2zCjka/PC2+LfSbmw87NVlT8ueGex9cf5Fk7Y+bygzbMi7WtDRlYhy9OXjb30E1539Xp3fRZysnDu65ZNLGUv/y5wMAAID/Jb//OCV364S9RjR937v0wfHNw/6z/4P+kwcFogfCB30T6P9xwsn1tfuvnPfnpKnjV8b7sVH9Wd2rJi75ucmvd4Z2jPRdz+47lsYYfWv0jXd1Mkf8Wu/L09uPe43LMaZp9Retbh+rFrXch0Wf6q25/P2AuaG/7Hw04X2mCVun/xXj+0PFUscr1P1ciRdH8zco/mvN77tU3fMv1wEAAAD/lYaXil/1VMrJg2Y+nXixQv+tw//Z/2H/kwcF4gbCB0UILOxxomvE//xtRYRs/VKc/u7Dyr0zov869fK8a6niX3q24+KglPkOjcvdO1Kxj8277Z33LvXXv96tb3fz+3STrvQak/ZffCIAAAD8j3cqxt3rzzJfDrt2y/3vX/dcPvKf/R/hP3lQIGkgfFCYwOYM6etVCopQJVmhy3Vq58tW9c2GHlMO/tBg0L98PgAAAPC/4Pbph5WXd2n9d/0059Osi9h63z/7P/J/8qBA2v/79/9JnhzMtyPNjvR/pH9Y4McYSWY8Ovyw/pGNPxR8GGn05sHrax1aW+Vw37C3mzbKW2lQlQafC37fqeyzBqly177T93PHFQfW9jneovSxcivWvYzc7Enk3/6qHzowK/HZGik+FL06aNrOu7tmHHqx41HimLP2z13+L9cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8/8DO+0fuhv6rb+6NVyrUeP5qYKy6O7d2ePq4esjq3eGm3StV6WW/13sed38/dXvzcFv2Xxy1JleJjitHR8r+LlaVKH0brUg3s0jkvQfzZFr13etp82Mtr/Dly7Pf15XMMLr7sgrn/vgz0YZYfUtEuT3k3p4qu+NkiTawYqICvaPdWd24y6Ppe8PNXLtrUsYWHc4UvTFxyKzv25+8tfy32y3jjkjwz11BgUAgfNC/2w0AAAD8t4ifeELcDO/PDFh/8HSoH+rsH/rPDv9negcFIgTCB0UKvBqRO2yJ3ENi1Wz2V/PeM6fMaDfv0Ib7xz60DRt8M/rXtYG+Aw7MGzdg+oQJtUcfLhVcb9b+WHUCj6s3L35ie8iBFpfSpIvxqUiSTHMOja/ZNfmfj79sTTz5X342AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/0ChsutbDG6yZ27C+a2O1+54ZFfdnVs7PH1cPaRm+WG3Hxwb2mbVjIIZMmRNl3rd4ah3t3xXdX/HCRvStqvdNXaZYuFblu06s27UlncaxX64PMeS5THuzpwzr3iihCnKRuq+c3uYfAeuvMpX5JcsVZuU+LLt9Iifzr0sMLZb0zTLTu8tGrboskTNDq3tVq14s3gTN9atWbny9kRtn3/Tot2vnS78c1dQIBCI++9WAwAAAP81QnXbPKhhwtG9710bMbjRp3lb/9nhof6TBwUiBOIGwgWCBk2MGG3UT2lWLqs5rcq036K3fJl9R4rFJ+6cSfJha743HRc87j8v06JUN9JcaDu7RvoZYzb8y88CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/l9UalL/UMsvlbz9w4/VYqxrP3ZftqSp67R4cXfp1J+Cq57oFK5m69afmhestq3T1nFvqlQL93P9v0pNGvX37c9t7sW5Xv5r0noj2o4b/uRT3+JxaifL0jJ7n945M8UoFSlF4O/rpW9GeXN2atwrd1fEf/tidp0jpzo2Lbbn4I/THkUr/l2EnxNUSdEk+rUEGTL2e/TLjrzftn+Rs0+7LTsqDTp06Me7s+79VPLo1/oVNj6q9fRN3sth0yfMFPuvLbGPX9sdrfxvmZMNX5o+bLZhmY+PXraw9/3y5XNeT9W1Zao4yUvHvrMhR6ehIxotaJPh47hXi8OXuLo44fjQy5acSlniXtG0sWdOD+RfUHjPzeSjPtfcOPzIodpDnv6VaVHoio2GlL9x9knxYdO31Hu3e1uVUzHav9ky/WrO71N/fdv6RbpQ4e9E3Be2bsz+P01PmG/Q5DtlIrUpFmXGufkJFq9K3mrem4u/bJyfLcXJzpfS7zvTovvsvLmypes5pVa+ZPOzzIibp/+XuPG31Z88sU+KhtN//LT84cFjxQclLfRn4pb5kuX60mHG4P03Wv8RY3b0lw9m95g/NdaP1x++jTvsxLG6S76kWVW6fnCbh48uT/68oearGx3+eDCr9ti8eW5uqrL5ctrYL2KVbvKwaJ/6CZbPb/uuyshyzbKUilHwVMRo7fuP+Jp0WnD14Ci3cpe4sWt61wZ5mr2MvDPe5is7rhz8+/j5zhuKpY1arEzsUouXHZ55sEbGRhf/OpvqybHFhV6u3pXnxZDurcfELP2+frNznR+WSp76xLPFS8Pv+BgIPHo+LFqszXnjvciYr1v3mZ3ebiqdOFeBbffONmo2Zumi9jkONh2eKdbrmCX2JL6TpX3mj2e6rVwYdV71Jrsynsw9Ys83l2dE2RYv8eqEt5cuS92l8oH7++pEiNXkePlvh60Y0D7e2ldjr2SNkL9Q4ajhsg1vE7Zc/Rj58ydL8/PJuPmGxuiX+tzpmSe3ljlQPU+BiSlz7Mhaot+AUYsbP3tZs+nDOd/tLPTiVPZSE94taJ71wKnIsy7/fH5Xo90/tMpaq3D76p1zR09a4fryrBPTpI7QvNq+eX2idukypPGUXZMitft6sOPAsnVSp1+cb+mIwVvrX97YqfvCxFszfTujT55TswZXjzA3W7hJ3z7ItqP+dxHL55/U7G6GkxFyVosZo3nvT4niXDvVrkH1epuuJK9X4UbTikNP317R5v6hczMDUZbtfrnxp4kn+hf/817bjP0uXuz9cc7A7RVyhKwfmS7P7lS3kud51ql0r3Wbm96u+iJpjSrtQ1ZVyhn8fckEp5fWG1SvQ/IvadK2K15k5qedkVMWXbu/y/MWl+4EvyoWu2JwzPL5dyZv3Lpmrje3Vg6KlT/NgfgHjp/K3CNj9xonYyXKtDukwo6LZY6f396l8tfSvWK/S5nh1uSUfW4mfPkq8qvEn6s8iz+007zTqS7v6/Gm1NOkW2Ol3z/i3MEdGYN/Odk5e4FJ2VdMzdcoKM26ZXfXNjjasOKIWaM/heSOUKhD7CFTL7RdPaPog0qHBs+a9WOY3TV2nI4f926axnMS3w+bP/6TxY/DJuywbNi7NjWHdClwrWGFGN1fxLywsdaUJ5s2ND4TdVWE11faxby1uWvNaIfrJCudcsrPH765ubVB1dyvllWb2251ms2/pfmY+N53b2ulHfYs1PWPFaYeDPqc4E7uJ7XCx5iVZdnEU/tz/rSr7bvVV+O1qJisRaWD93OkWLez8ZckDxOfbpqtVI+T3U8mmnb6ULb5D5+02rWzSYKLNW4kTLn/6PsHESMcal/19cYbsbaeTLn8SNOxEZtPmTe9UYTdP0/9lK1F/Bk5pv6Wq9/BXVmSx8/8ZFGov2aMjhRhV2B86CcTEh1qcqxN3HJvzm55FCntqCqVfv3U9eDCZKU/tCh8omWDzgnibMw8M3KU+1E+Jc94cOaymhP3FMsTfDZb9VsZ/qo+LPHIchMbDNzaoNO30TtVrfDHo8ftaj/ZNPLk548P63xbp+Dot53XZq57OO+gh3GfTYw+u+Oo+vva96yzZHLK8nNSx76wLVypArk2zLjc9vXwi592BP3atmOZ3Cfq11obt9jycGdOPFiUJEf27Jdi961XY/qJr1MOZVoRK3jU5s1NazXul7hdoOeH8TWe9qrf5VS9K2PutGxysuCxEo++Wzdo6f4x+4N3ldyxY+irVW3eLdxY9+Wq+Itjjv5hR5VYqydNyV9v7ZtmW/Jcud4sT+JubSe2y/Wqc4VLJ8pVWf57woKZ596vVjdqlX6F6hQNEzP/5xNjL8x43aZiueDcuwukPH/9equ25aP81mv8dwkK/Nr+0pK+4fY2e7/y3NKDOS+2rdZ6UaYa1Vel7pR/67U7lwa8btH5VaKcQaXHVwpuffhsyU4dwtwe3PXvc7sPnym2OWyP3/d+3Fxzcqol8cZ/lyH+lqPjeo6ZEP9miuT9znfr1mPu4xmfilWZdDhJ7AbrW5atfTB8iz4vZ1aaOWD32/al2tQ4eOOXEud+btstZZK9zY6vSZY3z+rfyxapVOpI99yNw4cOLG9Xoe+Nxetfzp49MU2hWxWzv87fdtzp9rd+CR826fbdXcPPjdR+fMuRqUJd3XWi9Z6ZrU4mfXgrTovdE19+HP2+eIWov/SMNLBSjkJjgxPv6/h3cKLNBzddPzD74bvunaJv3P1gf8p6Pe/GWDx8TN/KOYZGbHe5VZ1YBRP80uPGpUHd9kUYEz54xqs0C0+cKvvnlhY1Jm0N1e/U6KKVqic80a5nyTDvKrWa9Oz5wkpXP+xvW+hDyOvyW0MlbTPlXvMR/SY+v9W7xs7p8Srs7njm75+KHmt190i+9HGTb1v8tlSBknH//OVRw7uznoY5OvBwqFqZ4lUf2uenha963P25WdXz89vkSVI3qHn1Zpvqt0vzpeudMfvildsfas7DL8tGT4mUcMu3vXsOv160yqC+fwy7lz9Byk/rEmS70TzDo6NlX01NOSfijhdZK74+dWZOpHKZG03aNG175307t9XLvj3Dqysb50YIeTayfcTbbwZsu7Ckwpw9qebGmZzq0evCVcpVzTmyYucRKdpV/KZ99RghQ680H7rswsnL9zeWXDYx0oinNZr0Dr1h/96apz7l6VsiV7GY8TvEPvvwj+5hV53N+ODPtIv25AjpcepV4nTpM6yYVTLS0BzXxycMv+rmokJf92VcMixX1fhf+kQZ/nrkmOl9qyQ/mnhZ8y2PwifuH6XdoNRV8n3TYliVw38f2Xtsy/VCoScUzRU5XYuNGa+UaLal+a9ZghMVupJw8Klli6KlHFNkSbw4h0qvO1klKPT3e0INCdeozfXGp2OH++F01zc7LjWqP+VT2CKHHwyeVKtdwepFbv6Y48j1tZcyhMzvOyJl7B5JFq7OsbZkrW8+5prxZVDFSHkyxf75rxcj06xNmyTcptnfR2neInnzcGsfJm7ccNfXeEsvTlgV9/j1jD/sPZzga78LldZfWnghePT1+fejFB32W5jJu9qsuDAn847WfzSNf2Bnr9/vt0mwOWPEkqfWdU3/teqkgVUrDIgz9PbqSocafpwQenLa/pnD5Yz9S/JZIR9aZ0rwseOELNN2tJhyJVfYLvMudPzu0/6Pa6IGcmWv9L5UypRJf19d/97y9t++zxzh9sFLN9ed2pC8er0oH160rp73p+0lV55+8l3t1rEXH8ib7W6V9jdHPXu66t2RkIwzNn8u/7BflujLe41oUfH7nlGqfF/xY/LIeUJ12DPmlw0vm8be8OTgs/jVN4Yf+irv+3FHEx3bdbDXlJD1QZkqHV065/ix2+GzJGlRtED2XBUe9Q4ZnzVR0zVnkr2/dmpv+d4n74cki3lwUPzHBRcOqr0mQujfG48p0fTZ2JfNrr99sCNKlmIPBmetV/j5r2M61duZsfwPdcJ3WzxvaYalP9y5s35RztFXlg0+cKf5nwuWRxyfq/2ipZHKbv+2yQ8ljrft2qfjkjf961Vd8eVAp8QXf1hVoEf6UkX+TDkhS9n7z8LNnpag4JIj9ea3Kd65ff5ZcV/tbh74v9i1q1itzrZd2BOYSHEoXty9SHF3mWhh4u7u7locirtbgQnF3d3d3QvFXQv/xnrfZG3+ycpKk28dx+6VPM91n3cyknNk5O0ZXD1n/15fS1XvlKJz9KwZtt6P0qPh8hInNm8q2OLT9qCTWT5/37Arb/SE4w9cS1u/0Ia+y3pN+R7YYVrXmcFTVu8aVO7Z77/dmLT4/fnl80emCXhQJPSvW45d6P/5WtXAeTFL5gua1+Bz1ccT9seJd6LUpfMbk98rmORQyOBfCnRI+PTBodRxG+xJHOldz7O7a9zof/D875OHNziS4nql30t/uvDj5ryFc90qNvFkrZFN/2wyOH2879W2Va1xpEibnT9Oe/FbseBkzw/9OGvTw+w3gl4FLdjTYHu7G02mNCm0J9L25Lua/jmsSNyaJzpUT1emaqaJ9f8+sfXMxVTDS8yIMrRK5mj1tzZOMDukWmBI1lv12uXdmuzE8RJv87Uon7Le9fW1047sN3ZK4fpnDk9dlL7NqPet+q3tPb9SiTTZGw+tX2bXhKvTl/Zp2a5WqbFn7kXoU3BZj9/D5ti9tlrMb0O/DflcNWnDKlNfxMjQPHyfvVNblx04IkXRFNUfnhh+/VuYUPkqfDvWJ2npeSe3/3C/YaxUnV/krjZ48NcVFeamPBouw/0mJ37e+rzAhNmLor8uumtMqFrLHybOdCFv+AaBz6vsWRk8L9uxhbGejGj3U5xSUU6Oy9osz/bt3XbUq5HkfsK+N/PfvZmhS9d7cf9JVnxXgtx9sqd8dCz0tdmtftw1dVWKrc+qDK+6Z/buotPTpavzU7rpu0Od/Ly03KCQBWXHTB+9su+LejXOLGtVPlLgyfLf5h+JXjvHjXi9s4ReXqZkcPurgZELXm/du37QhPJl75crUirTme9/xps5vNC+e20z39mSdWm0yPHG5mox+KdHt28FbLmUodqjwvmK9h40al//p1vuvmq2vFvEAfPCLCwakOTY3cBXzRpO6N3nSY7xO87Oq3IrOFHknVE3PmvaJNbmLFO23XlXpn/Uvf98qPZ0ceTceS7er9Spxc2fI3dsNGpmoY5fc5wMF69j/u+Ng3PneFst77xpmaOUznsi2b7k5XIM/pz5esvZaZuOCLNzYY/Tncq/XRpt0F9hJyVeWPC3ToNj7q6Qs1rPiBuP5j44ZHaFfWHX/55h+OuQPX/siFO34KMte6KXWp84Ze/8VQskefh+StvPj/NW/vXulreFvwwa1TVP/51Tv60/1z9dl+hp9od0XPS4wcHEQ8ZNbj+gQql4K3v3eXG+6W/p8vxdrsKI8Y0Gbzn8dfi9neVn70pedl2nj4XPDLxROmfjP97UKxv9SJrCJ1dmHv1o77YUk0uUK5rtRse85+v/8erXRI9+/bCq4fSPJX56/fbKxkQv8k+fvOFIlFEpu35YECNV6VfXyp9PEr5e7X3dGx5bWzFhu6PN+h/68dWbcjFnxik3Om+Cq6kaBC94VTFR9g/98uU5UDF+w719OjYY2GV3qVzXT7Q/Xy/CxDXNEmybfPXWwadB1dJsW5w4esG0wZ0jXnvbuN/jC3FarEuQcH+UvUki3q8aK1b+FXtLrR1/59nR0As2re52b9bJu8OXRl9x/cGAsifrljswrWn2a8Vn3r2b/68CR+ee//4iUq0szR/9Gbdt1KQ/vk35a5dSe+LkazIuzKrfEuWsXGvjtkjx93Uf2z37g8dDymZINuph35SvepVNUitbwkvNXkX/lD9Hvu+z85UsEKpRmY1fJtWue77cgeyf0wWnbXUjQ6F8sdLVnblt9segnPuqtt//YXCVk+/S5744c8jm6YsrZcq68EOUdN3Gnfu2+KeonXffazEu6sDb/RYl3vruTO+j99u86twtXtcdB6fXG/pmfqNYhX7IFvdq7eSNgiOfvpj9/OK54edkuzb80V+nq+YMbFEj4pimsUqELMx981qpMJO3XNvWeGvhOjGbLyk04GGi7D++Lfz4deTPga0T960SPenMemOPTZ0VLXh5YJiApR2TFu7RtsyHCQlax+p2ImKLnKuObHh0oGOVi2P/zLMxcsDJguf2dZgzNaDn5AgTlm2oXyTB7Sh7e4cJFSbr+LQf77RO/bLXjVbh6p+evGhJ60mx551v+77I4iGjO0Ybf6HkyqvxD/w5PP6i0GPfF2+8bcSIny53j3RgWdNPZXNVjB/3/rKrE6qWjj6vYv01+Vq9nzIlKEKtT6VqXFv/PEL+w+kbnDxzunmiW0Vn9Z3T8FmRnFGj//U06dM6BVZ2adFh38lMn3tG3zMwY/JCYYtXT/tp9t0aTw61edB8RK6M5Vc92ta03LvLB6MeOzJoRcjkdB+DsudpsuVi7vl934b/lu5wngLtMhfff73w51CHDwWfTb68dLhjtcrsjv3h4pA2+8aVPfN90O+DqtXpsuVG6c3Vt+fs+feX4CxBmYb3nXkz4fRCfcvleZW7TN/wL+LmaFQt2oPif6/762SisXP6nUvXMdeRO7GufNx6N2Oxu33zRVv18nPR+WO756uctsfn1y1ONU+xKPkvIY9CjfgSmOrjhKBP0ycfblK+/Nd3XXLOfp336KwMXVttzhU0rF/VGaeK707TMEHIiI0LW+9LVXxUyYErRl7Pse/7jek9f6l44vGI9yc3Dnj+z/nenUec/OlB9PO/tCn2vfbBSDfjvjiYs8Khrftf57oTdCdzzOIzn68+VDD95b1h6sQ+V/pmppU94i3L/Snhk7sJkh/tkqt3s4J9m1UMjFI22YUia9KUmp/gcJxId1cWXR5cI8Pxx7EGHd5W5VWovdFiHn0dbcbw9fG7D6wzb3TWHcUrRc4ZtVC/1omyV8my6MnBJ1EXdc0ze9iDJ5FXbY++bXjv4AYVEr5fH7rty6+lF1yfkGR/xIb7qy38dmXksk8Nn25pNbd8hiY5/+jUKEry5xPnTkhUsuj471nPT5s0KlykbuVT5awSa2vprmV6PmpZrGxgcObKrQvd//vmoMr7UhaqEulcww+hC/8Tv1L7D+niPM8X+VStzp3mju5642HzhD3rH5hVpd+UaYdu9+paM/rYuG965L5VO1qY749ufT8XcczXgs2j16+Totqkv/6J+fPwgsuy/DE5eeLgk4sHn56waUe5OjvL3Ih8PUbccWErjpux7I9OH29fmpxyerksgQGZ+zRLVDpS5qpJWnbP0HxH9DRPE99Z+KpV5zXn81/5Y03eZw0Sr+8WfOD33hFznnw1MdWqiUfWrn0TMrn21ZXpVkzadnNz1rTlN0XKOnNYjdx9hg99lv6fh+PrXl+84uHgNcvfBI8u9yFChkNri32YmPv71NCx27QoleFhlzeL1/UvUeunRpe/R76Wsf/imPPuvh+Va0D55ctWtxid8fytgotr94gUvt2wJo3CDQiKkb3mtsIfa9wt/ux+o8G9s+x4Evfhh3sZSnxYk6PQt3znu+Y/k/XMiNPp2gfOrBexU8wW90puntA11ptrM8qPLbgn8/Sg+gujrNx//VaDzAPmptgfKe2UNbtqzk76Z8xw3YalmThr27zJ7zf2+bHa09rl6n15vH/B8aLxS2dZMzfnzu4HahePG+FejF8mzX647M9vVer8fX1a/xmhms2duCXg9OqBwacLbCzVe+/tsg9W5Tpb50CT9WuS9PsnaddvTx+n79Do5+EJQp1KtXB4qNCJDtaMsyb4/Jjgn5OOOPixXKys0fYvXRL+8OAoAzbcnRk9WecycVIkK/XL2uBIa6uOe9zn1Lk5kRJWDUneMXKFe4XC51l54N6xabMmBHToHNTjTsNa31rPHZQyzOegsvnDNpn0x5V6MWcu+L3KbxkPV2x/fujfudb9Ge7OvMbZssxrtHDdDw/qvfzzrz056q8b1/ZbSOM/5t4aOv9O+B0Rtq4vUrVJ9Ztfi7++vjlD3h8bloy29f0/NVMnr9b6VLufWp/uUDFR8ovxD0x7PPBkcKrT+YanjvrDgtuZL2e5Vmddmppd60xsOTdm7mWTDyTeuujvnOPzXigY+DxdmdMTE0XZXebUo+C8i+sXnPnTscY3moRsfdC5Y8nD674+id2i2N7GsfLcujUqU8TA0skDnje4Vf/zji0Fui859OFz4VR7ViZ5cHZqlBLhjn2L0GdGqN3JUx+pnmB4lmpfO00unb9Zr7lVHi3bPzdVjzn3K+3KcHlahLmHD8e7daFT+fB38wSE/l/vVrNlPpGiWdLT1+a26vnh2oG88Sqv+LtOn73vTqWbuKbNq4lFr67pMWFV5LvFwkwdPfGPeEXX3F0QucLfCWLEzLc4TN45rXcPv5gw8fKIfwzLF/NCzNZdP5bvsSuo4PeAqX+Ei5/q84opp35fWGNZmYXFVvVcm2DGkMm5p8bZl3vW8Zulf720ZMa6yH0qB8Ub0mFb3GP9Nh8pE5I0xcPlR1NW/JLx+ppsf7573rzIvLanuz57UKBitZXZww/P/XrkqordWyfaW7nH74vKXonWrPKYuUN2/H4zZ4bB6dOt6z55WMflO7NmzLUhzoWTVVteDR33l+ZfEl8u1e5x5fjz2lfp12LeljCjmicaNKDPT802Zps6IGBJr3rFcyyKkeVSkvQv3txeuDzssvlNDw/7MaTxmVRlenzLkDRWkfh56sbufKL1vYwZSwzrsXTmPxvP3s3e6cDNmyHd77TPPrbZ+fhzXhU50HVBmbLFtoyOl71X28TZQ78pe7BFjXarLrxJvCxprV8zt8h+5U2bPNHe3uqXtN+dMm8OhHrdaGLfQVv3Ptkz/8nxBtOmHr0XcdYvF0fFvbWoSd8Tj6LNfRYpbO4uxdbuuN9oWctl0xp9nBkh6dxyYaP/WbD76mv1dz+4++JLr4vDxtzNOSfruEtXZo6YW3FImPp7EwRd7ZSiQOikl1Ptqluj49NW/WNW3zZ7WfwSB9+k6jAi2Z0U2VOHhMTodblXpDAX96yP3rDjy7g3+m1tk7tE6+OTc9yadnfllY9R8paYvaRkmOUf/w6XMvzH2HULzVw4MvHG2X8ezTR36LeZnaLeejG9fsswOeMXzzh9xZUGozPmzLKk7MMCKf8uXO1G3OHDK719e77ohaYnQve5tLXI8pbJA37duSvWtOGdo/71tkXxuquqVJ6/9030MneSRow+ZVuVrFHKZ9w7N0fTPr+v73bl64QoA3oXTrou4/mgzGEali1wf16zkOJDYn7pvq1hnlNRj7d49O3MhH2tQ9Ubn7Xg2SOB0ePnHx71x6rLGhT8q3it8a3qP/2rSsJJC3eG9E6XaMjBqYtynSvRvcjAmzOy13rYt9GJO1GyvY3UtP/Y/K3CPEjQIdniSkd6r4+UO1bJkwujHrxb+ETlPg9mN1uTruulxxESF4gwvNOiwjXGfSpZeVH0xE32rchZIUnowTVq1bx/dFSz3S17RzkYcVr4AoPCdln0V6p0iafmfnpmQ5aUt+LnCHPp3rLy3aovnRDwcVOx9U1Wfk/S6tSP2Xu1vhnqTZzfn/6ZJGLTJlXezP28pUnZNL1K/Vh/XNaoc4aGuf3+j8WxNkScX6dTmME96+XrMmxpnVepgxOXafxizsfHgR3bbHpSocGS++NO1flp+JcGR24+HBdz5argji/T7rzwJGv7WndS3exyakHnN/liZIh5IORCmeoT93zdEbS53NewaSaU2r84V4c6U6bXbNh6TryJdW5s/Bjx064qBc6kfLivw4FMmd+e2Rwyt/auayPjhgkolnLujPBvZ1UOjtcpZdpfGxac/ynTuxvL7q0uFCnW2HMNGwzbU6hl31T/XLiwt0D6V3OnLGg7oUyu+ktLF/3Qu8DSPiE/1+q+8HPBpzVTb022uMaU8It3dT/+oPH2kgfq3I1+b1G+cOn6Pl9d+2PLkA6HgzZnCrUqwYG4pT6n/OndnGETU15LkWBL54Z3kwcXOJ817OS6c/a3G7yyc5srKUZk3rh5VJTTV7rNjRp5c4SYF3YMb/wozi/tikdOGBKhQvzH3/d8r/Mtx7S0IeOzF6u1KGP4vnmzl7z4LF22Zx36xR6U/1nFAYW63zvZtXOceekmzj6+MmqkROP6HO4Zu3P6E+mPlZnyKEPWSV1W/pngbtYnfQNW/9Wu1r5zY6Yt7/tucbIPsX/vPz9d4adVu6X7fOeH0k2mRyve50Fg3/qvpp3s+dvCtFcC+7SYOK97yYgHduct3O/ypVrh9mWNWvtxhJnHd3YbV+vC3cXTAnOvH/9jga05Bu3O9Tr12DJTP55eXnpC6Nlr1/VcNqHoqqy9ylbuduzMpQgJBi0edWjx4m8XCgftarG34Io2De/HmVcwZGSKyn3DNV204MX1/KXKjUqwM/SWSRtnFq+zrNKlq3vDHx2UZEP9kJEX54/PVuhs7LHXSgw8d3vig+OR78ee9arbkBQ/dGz2Q+0vyxq8SjI4cpHg67Wy9Rly5vSzYUta791042XpZlt2R4y9+vytXPe6B8SelTN/rBdfJpR4d2hs6AwbFpSt8DLCgAc/dg7Mty5Plpo1mn7MWndocISXoWsu3NW7198VPhfslHRI2QbbzvZPWK19vVdJq6YenKlXmnTvq944sahV+Z+iJ6zyd/5WJ04mO19gXMoh45f8kyrD9lDTtt95PqFzr3lXY69elmd4qfm3u56K/LnMna8l8ndrXP5DjAktstaPd7bt38vepls/Y+zn5fFvt3ozvHmr5duGdi1wJune2rvmDivSN1WO2xFHb3xfddXzcs+Lfkr916vhB7O1efvhY7enB8OnebtqWqbjz9/niPTTiIZvnvVtW/z4+NIVu1TLHG7duFXx4rdrlHx0wlE7rnVfXy/lzR9KRI2S7ccjuycv75V8Q+EXMR+UO3xp1fVyqX4p9DF39hPNVvSv83BA5J8ev329pn2yz9mfhi8T4VTk1zU2fqt3+nGnp+tmPa19IM6FC/GDD56dfffahoK7z33t+eBRj+cV5jQ8erDssHqZmwXk3bvp4+3cgaU31QjOnfbPgm1yTy6RNGLi7bHzZ4iSLlOoBVWTJt94f8qYeytWvUs86XH7KCcizvgn/bMx12bsPvb2h95pMlarsu37+tk/Hh94/dSNTztaPv7e7o9wmxKWGxg0IF3jk+VKxE904em6TjkL3i3Q8H6CsUtu1Zpdp+m0UAl++P3yjERr+tVM2bJJrQqFWk1onPiPtNNf7mqy9UaiMj23pK+Zf9upJ9W6V2ya93PPKcVPhSpW8VTQ5hurW5ffUuP7mJSJGlaZ8aB/re8VU7wZvuT24+WtOo7ce/TUyo0/v62zdV/Y0Ate7o3cvmKTRLnOx05S6VKMva2ijWgR84dDI2KVv1Ir1eNTB8/333Oo7/ei8YclvxspVrkoZzYkLh036Gab5MvvFSvV8+LcE+FO1v1Sr8/qkQH7HsXtFL//4uJl5vWYsiJ34vq/5Uv4bMLq5Flzbz6Tv2H+ydNazUh/YmS06aPnvfz5ULQhVwt3jDZiVuDrjTuaJCj1aVzE5vWSHy8SdW+eHSkOFyqQZUDs+jezbI2b8MeXEe6lGJi1e5I4WR6fi9/o+tuIT06H2X3y7cU+G4d8+vlhoq7NHzdcUKlospZl4uXfnCZBxAJPBtcp9dPDqXUSP6o4KX6ODV9Wzt00s9K7HIEbY25JcrzniY3TZkb86feoec6U63cz4/fjA0+FGl+++cijCx92DumQc1rNv/fmrFcl5Fry4jFSlgidKOO5RuvbjKvRfXfLPZknZc5x4+vi1n33trhY6l27mmPjtvgnX7RlneaWj/NDnHkLm++ctOvWomzZMjZJVWRYnjs1d4ed/CLd55z1s9dKv+zp0aZ9kv48pvetrzdype2dLX76Ib3mbrm5PWay+pGq1wpzttH+gN5tqx8JH/N+iq8bH/1ypdLGTQ83dpx0bOO68+UXN3jw7eWxV+8jJp259myu4OBMi1smnFGoV8iOXwYunfl4XpSr2XuPK5b505wJBfcsPNq+c+Hrh0YkDdhUOvW1gy+Hz837T+/jnyOtihvj/R+Vw5/PeXN7yQkDqmxJV/V1onqHOkRYc2BE36jNY4XdtXLzx2O7jyZoU3XfgbXDJhefl/vPPAdzjqxyOE69S/dHXh8c+dfX9W5dyFpga+o2bQIK9Nr7euX1z7Pmb6m0tumdL6HKhty8O6zl6c5jkpdum/1BrwI3UgfU35YpUqhXlfJtGzK1fedu46L8ka1d6O3Va7XokXzf+MQ9F1dccX/b/rJZEv/6adXmkDhz1r79+Uz3X/4+UblI4zMD2+6fnvLDqFXf38Y8FmHLvEqP1ve8XW9jcIonN643Tj4o+HzUf/v7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgf45db2sd7nht5uecv1WKnGXT5Z/r7NrW/tmT4BN9QpKMjxv9SN3g0msTptmVrVOr66mrV5lXPtXujqcuR608YVCUp5tTBMT7VmFW+YOHHg2ZuLbH/fs38sd7XuiHmhsyz3w3oVSDBtWazLm1aFLYZGV/39HvyLJ2pY4lGT7z7qpEZ7e3WlP3ZPEWg2uHmld44OXKKa5fu/y5fYvUT5a+3nFy0MX/7hUYEBAQ79+NBgAAAP7H+LL5Wt9IQTHCXqo4Knb+nKHv/LeHh/rPPDAgQkC8gLAB8S9fW9rl4e02GdqtqjCtR+0iVQ9PCPWofPPYl1YMu16z0+5Sl6Ym/lZqe5jc//JxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4vi7y11q/yR24/LZvnxZuXyMbPU2bWt/bMnwSc2bO/R8XrDrwEDc84YezBs/2k1D7SqmybUi9nzJ/Y+lWfR0MQ9nm5YV7xbzC1fMtZePere+B9idinzZ5i2i2Je+7HPiN6DE71vPvpx4xZjDy/INrbr2dfTwtftWGTDh19/y39jy6e3BdP2rR4pYomOkWu/r3O36pvaS3u8bDc006A0X0oOLZnvv3sFBgQEhA/8d7MBAACA/ylSRF3VcmW0xOM7VkldPV/BwrX+28Mj/GceGBAhIHxgioAFYVfGjXCqfal0CX+OEBBwPd+7iOPj7c569vacGj8dC9M72/CfZvVaM+JYrsr95raYeKTAu/RtJk34tCl64bR1JrVbfbfU5CJPNv1WZ2OeOZsnZu7dc9P7TfkvbU6wa+eR8jPat5+w42bo//xZ07L1s5/6nDdLp5wrxwbX2dDj292x4ZMXjzsrRaUhk3bV714u4pdDR+KW/7AkddfiFVONGfX9ZOLTk5aU+O3niyePlx+8bkSl0EcvX708s9/NLjmqxex1OFRAlkOHLhSeNvnbDwuGHfjeenGuA2+jLqgy7ujOsc3XViqefMZP6+oUi3Ki/Kv8eY9faHW75cPOwVEXlYs8ZFC+mpue72uavnn6JAWmdTj+Q/dKe66PHBUjxvkNdU+lb7BuTPv1qzdGL1Z79IDUv03Y/S9eHQAAAPz/1nj6i7JP2o4s1nLfzEhzznZu9N/+H+k/88CA6AHhA6MGVI1/Z0Rg7eqzPvUsELdWxV9zxxo698yA/iVTfnq7/GtAi3UlhkTofGrDrrq3i3dYtPtCrCIzFpZftbRmkz7l444s3fzawoYxOl/aNj3MnQpjLsYqkWjTP1UOLR27oM3AGK1P1mgdvW7PrIc/ZJoxKk2e6lOinizeKahdk2b9/+VYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/wO/bTzdbFjAyLtdGn9dW7l7ULI6u7a1f/Yk+ETj1jfjr978oVjpvVtn3a0yOePNFfV2x40eOGvukQN78zf7s873RI/2jdpUfVC2Wi0K/Fx/efOiOTKG/WHMpH5LSo9atPnRvKAtcdst2ZLs2tjD8/4581exQmOedHqyq8CqrdlTfiqRYWWDShEndS75z18lw69Z83bE6DmvQmKEDvd2X63CSdP/d6/AgICAeP9uNAAAAPA/xossV6dU2JypeqcZlVdHqxov6L89PNR/5oEBEQLiBSQKqBz5WJLJsUcvSfHge7Vf7kZ+fqdgrSX9tiadsrnlxOe3O/ffGi6g6d1bp0N3WRK92csHYXM9yjPxXOakn/94ErXgsJing07ka9ngeNCMM8PaPAu4ULzhvOb/68fLfVu8bnPxJeV6fY9fukK/Vy0ilOoXEnd+hfkvdk8ufzX26nHZl8+Yvy9e0XSbHoyZ87Zpu+eDH0wK3b3xmz5tS81Z9Guk6a/Dhx43b1/HXG+DqtS7PGnold5F8sasfWhVm0mrHnyqEmrm5lWBTQYM3vqiRLYqjVc1Snl1bIsJd7oNK7Jvftw6OxKsfbn+/rXwG4pGH/C2VqbWN5vEK3Yu3YkbM5P8m3cBAAAA/7ecuVvt9wKHZ18s1jrK5vV1k078b/8P+595YED0gPCB7QJKLP6r8voth1rv7/N+cKwxO0ukv72kwbf5U/pfitl8X/1hZSrEnp0wzbalEWOMfT+28sfbyzbGntOz2bXOa1tkX5sx8sbXyU7VDEocrknu/QVDfu1Z98Td3uMivVqXqNf8k/nDbHrY60urS78USr26wY0dGxYc6ho14svaby9ea5bu28DmZ9r+krVg1R7Jz47r9DLGjkwVr53tkfX+k+bzi8Y+nvL3oAtJfl2Xvn31jbcDl3XYOPlcYJi6h74NSXx1wuH3YcNWbtVocL5wHWo2bFf9fPJCj+4trXvrye3C0xtMLTt42KyolxL98Pupr4sGb4m4Levs7d8OPOncYUeuuFNLjFz546wMPUPHjRT19KkfErXre+6XLHkiN9laYMyqtYeWV8kVNV6xrnUu7/4U4eHg+MvbJpuau9uumy1Gvt19JdWLYWVHldvbJnvU9ataX/jz3YETRbo/eBO1TZRyk0Pv/DLgfuSvqTYEHllYfHjzA+EbVy0Qs2f0y0uX5Zz6YX7XHknvNt+ecP3KnVX7zG3wbP6YGKEiNnq1+s30SKOWHxv07dzsDLHHDFvwbHKhzZGetZ46ukT9X/dUn1Xy8PPkvdNW6zb8yPTgmtGnvwn5o0Xl8jcapOk977e6czq/aVOu44V7O2eNHXioZLo+/0yId6x0y0ttBmY8/8M/Dw/POnuiY9ku+bK3TJop+qkOC9Ynr3D4RbeqOYrMLtt+QqfAeKuGzt5TIVuHlsmDlpxYc2Piw9uHPrSb9W3G5/DRDof8VXbGzjdhEvdtHv2XI9tP5m16rkrsqwe/FAtIGG5WpvQdPtbtEPLb+RUv2z2NUi50SOeD+YN7//1qc7rDO75e+vXzxHKFLi6ul/pl5OQZrs+InPhG9wehsxa6Mvl2/bMFQuqePDV/+qGaiS6F2prwQPtxPbIHVF6TalKD9N07XaqZOGzwsUIhQe27vKuSL9vl+29T9Z8UukOsnCuivB67ttP+v0vUznA+59J3NRrEvDfo4LWit9693v1hVrk3hU4cOPWtR49Jtf7IHCmo7S9Nb44O2+xFxL5Xm/70ec/Q8/MjtHuT9PiJFVOL12gYtfKVTh9KvN2d7NjutnkutZ/3clWZOFtSv0kc7+KWDL1jDvwQ3Crl6dGxg/fknPy9wrGfAtdE+i1a1C7TUkaruHR7sb51hj1YGlR/ZZM5mbJ3DphUPOKXhL/EmrY1w/Onv+9eeufH0PFm5Ihd4VaGIR03/9Ylb+wdk94cHR2q0I4+YVvertC2SeDaQ40WVV26PkOmiS07fhz8tXLoR1ViBkQq22XksE+P2z8qmf3Nv/xYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P1Z12IO0Yb6FzXF/3g9F7jWb97HOrm3tnz0JPjG/cNDQ92/+7Pe+TcWuWWquTpv06M95wj9vM2jjkmOZvhzedO6PCx0+jwwz7XLToERZ8o7YcW34+sqZrkSqVD0gyZR8RcJUXrV/6JWrs2v+s73WxHObP74q2PtxuXwT8g2p/HlXvgP90myMMS977IkBP5x4E31NsrUheYLKxo5ermPjq63DDPrvXoEBAQHhA//dbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/NS3XfAmTakykoyW7jfoyaPaCbnV2bWv/7EnwiQQ3luyv0TT1gQxLn1zanrBOg2NDph4dsDtfjZ3fq17P/jJwSuk5/epsnVZ0wdxCFXvXaJ4u3IKnv8SN3b300zvbZ25NnSPtyTM9vqaZ0qdHoXvdEuWesi/PtAJFK97dOKXl6Gs7Jr1sdjbtveoLOuRu3H9i65FF32bckS59rVw1h/Xpcqp/6v/uFRgQEBDv340GAAAA/sdYsStL3/ZFJgcnKDZtV4yE29L8t4eH+s88MCBCQLyAcAHR/l7cZFap2r+2mJv+TczXiV78dupx8ObRgx+nf/dH/xRBb9c2yXQ16r2374b06txt2MV5Z7P+y8cCAAAA/jezoqWMvaT5p5yD9v0Z+XyFC2//2/8D/zMPDIgeED4wZcCdnkVeL64QPP7D0MFlhg0Zf2xPzQRjOg0p1mrw3RNNCux/+WRUhnrjs15ZnfTneClKt3s9eXzfjreTDpg1vX6iWbHnJVqyqXCSMFknrN9TrfuWq6/K1hz7Q8nZIVO+ro9ztmfVLO36/PM4w/2eZ7933rt9S5Q7rQP7JF4db2CNFQv2T5rec+3mxr93bBu1Q6LXtacmTJCkUbIlE55sSXjx552j+g7dlWZEwd7DNg4Y1jvbpEcFutWenf+X8k1jFA53be6EHDFyfO87O2f/JB3iFTrx7dnpof1uxMx45Nekw3IEr/u7V4vF60IChm1uWjtd4Li0STv26D26RZleJdeXGP69eeF6S1KNHxK0IuzlBP+8PHlr8uQemdKeCtsw1dJUDZJ+/pYkbMDI0km2zC7evm/k62dv7w7d9OarzQkbjE/fLcn/nmngv3OVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8f+zAgQAAAAAAkP9rI1RVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVhBw4EAAAAAID8XxuhqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqCvt1G1pVGcAB/Dn33ul1d7M7++CtoDJIZb0tJIqCGlQjIldh0AuIllkD9YPYB4PAbWhb+CWMIJBqEfSyiMIozUiEWh8KVp+Mgt78khDBkDYqPxjbzpl3x3uaHllB/X5wePY859z/ed7u2T0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/9rCUm2q/GzXtonuC2//vH/j+I47Dm7pe/PA5Uee39+1tm/18RP37hwdOfjOUNs3e269bfiPu8d+PHT45JzB26eL9rhaDiEaj0LYefO6iYGRL5ZOtkUhhGJU7Q2hLVoy0halEjr+DCE8OtPP2Sc/HF/12GTZt3vhrPbzUiHpcYVKMenPtOrs/vLfUo73WWHVoYGjr3a9v6+rc+LYtn039p66JJq85kC8n0JYvD79+UKD3Ec29LS3b9r45CtXDv+87telPcMv3rlm5f0PvN2yaO1Lz2zfc+3Lg9/f9/AV7zU3hRAWxcekZLfWkpvH5T0hhOa6/BvmGNdlZzj+qzPql8TlgriszJGTnF+WqqfnJv0lTjSlytY57neuGq1ZI1n9PVst85Q7V14yzuQx9lFctp9lfjE5olCIQmnmdpujU3sk1K1bFKKptSzP1AtT9UJdf5tm9z9K1QuperEpNa6p+8YbrRhFs9uT61LtyTyU4vZl9c/6BtZktF8Ql+X4i/p7Ug/pP6ZVTvtjZlxTkn6N/U1f/gmFumdQo/aZhY8XoxK3VaIlp33mZAPJudI1LXsHqqXuakY/onejOD/KlV9Y8NsnD3Ve2l7Lyl9fiPMLufKvf3DgqSe+3LE8M//ZJL+YK/+nt1472lMbvChzfsaS+Snlyl9x3cVPl0drtZVZ+UNJfjlX/vJfXj/+8Wj/kcz+dyTzsyhX/uax1se3DG39OjM/JPnNufJv2X2sp/ON757LzD+czE8lV/7+vd0/LFz96QcdWflfJfmtufKv6l9xomtX102Z+7MzmZ9qrvzqXVs3fLup2J/17Ix6z/Q/LACNnB//xhqM63nfU89V3fvCC9Vo+jdfS3zM57va5H0Wz2M+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/46/AgAA//87T/xl") sendto$phonet(0xffffffffffffffff, &(0x7f0000000000)="abb38364d788ab8b", 0x8, 0x800, &(0x7f00000000c0)={0x23, 0x1, 0x1, 0x2}, 0x10) [ 75.840568][ T4703] Bluetooth: hci0: command tx timeout [ 73.792622][ T4703] Bluetooth: hci0: command tx timeout [ 73.832002][ T5354] tmpfs: Cannot enable quota on remount [ 74.184170][ T5354] loop0: detected capacity change from 0 to 32768 [ 74.424798][ T5354] bcachefs (loop0): starting version 1.7: mi_btree_bitmap opts=metadata_checksum=none,data_checksum=none,compression=lz4,metadata_target=/dev/loop0,noinodes_use_key_cache,grpquota,degraded=yes,journal_flush_disabled,fsck,fix_errors=yes,nojournal_transaction_names [ 74.424820][ T5354] allowing incompatible features above 0.0: (unknown version) [ 74.424827][ T5354] features: lz4,new_siphash,inline_data,new_extent_overwrite,btree_ptr_v2,new_varint,journal_no_flush,alloc_v2,extents_across_btree_nodes [ 74.449877][ T5354] bcachefs (loop0): Using encoding defined by superblock: utf8-12.1.0 [ 74.455241][ T5354] bcachefs (loop0): invalid bkey in superblock btree=snapshots level=0: u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0 [ 74.455300][ T5354] invalid key type for btree snapshots (btree_ptr_v2), deleting [ 74.469540][ T5354] bcachefs (loop0): recovering from clean shutdown, journal seq 13 [ 74.473741][ T5354] bcachefs (loop0): Version upgrade required: [ 74.473741][ T5354] Version upgrade from 0.32: (unknown version) to 1.7: mi_btree_bitmap incomplete [ 74.473741][ T5354] Doing incompatible version upgrade from 0.32: (unknown version) to 1.28: inode_has_case_insensitive [ 74.473741][ T5354] running recovery passes: check_allocations,check_extents_to_backpointers,check_snapshots,check_subvols,check_inodes,check_dirents,set_fs_needs_rebalance [ 74.563319][ T5354] bcachefs (loop0): btree node read error at btree extents level 0/0 [ 74.563356][ T5354] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 15 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0 [ 74.563368][ T5354] loop0 node offset 8/15 bset u64s 51: bset past end of btree node (offset 8 len 8 but written 15) [ 74.563377][ T5354] loop0 node offset 8/15 bset u64s 0: checksum error, type chacha20_poly1305_128: got 9c5ed46dd95a90bbf8b4faab9fea27c5 should be 37f1d6087d67d21bebd469bc807a31f8 [ 74.563388][ T5354] loop0 node offset 8/15 bset u64s 0: empty bset [ 74.563395][ T5354] loop0 btree validate error [ 74.563402][ T5354] repair success (rewriting node) [ 74.603121][ T5354] bcachefs (loop0): btree node read error at btree inodes level 0/0 [ 74.603141][ T5354] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 74.603152][ T5354] loop0 node offset 8/24 bset u64s 29: checksum error, type chacha20_poly1305_128: got 47786db2595d857e0a4619d5a4749b42 should be ef30da964eb82d57729a51b00f54184b [ 74.603165][ T5354] loop0 btree validate error [ 74.603171][ T5354] repair success (rewriting node) [ 74.635807][ T5354] bcachefs (loop0): btree node read error at btree alloc level 0/0 [ 74.635828][ T5354] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1818ce08861e3527 written 40 min_key POS_MIN durability: 1 ptr: 0:26:0 gen 0 [ 74.635840][ T5354] loop0 node offset 8/40 bset u64s 375: checksum error, type chacha20_poly1305_128: got b2bfad506885d55cf66f6ea1b37e8adb should be 61ec379a8789477e76ff1a5280fd6dbd [ 74.635853][ T5354] loop0 node offset 24/40 bset u64s 10: checksum error, type chacha20_poly1305_128: got faa1a153ba00f525ca6b204551f5191d should be eca0b87f8a1bd5d855d98c80b1d5305e [ 74.635865][ T5354] loop0 btree validate error [ 74.635873][ T5354] repair success (rewriting node) [ 74.678170][ T5354] bcachefs (loop0): btree node read error at btree freespace level 0/0 [ 74.678190][ T5354] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq b6c44d07df4e9bb7 written 48 min_key POS_MIN durability: 1 ptr: 0:29:0 gen 0 [ 74.678203][ T5354] loop0 node offset 24/48 bset u64s 8: checksum error, type chacha20_poly1305_128: got 72e4f26c5116da41edd23e86eddf6e20 should be 87471a53d12495829bed93d84e7fbb87 [ 74.678217][ T5354] loop0 btree validate error [ 74.678225][ T5354] repair success (rewriting node) [ 74.704518][ T5354] bcachefs (loop0): btree node read error at btree backpointers level 0/0 [ 74.704530][ T5354] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 3b468546fb27822d written 24 min_key POS_MIN durability: 1 ptr: 0:36:0 gen 0 [ 74.704537][ T5354] loop0 node offset 8/24 bset u64s 35: checksum error, type chacha20_poly1305_128: got 785a231b7a75008d1844f610b1718073 should be 230eae69ad0f1e91715326573b3e405a [ 74.704543][ T5354] node offset 8/24 bset u64s 35 bset byte offset 96: keys out of order: u64s 9 type backpointer 0:57718026928128:0 len 0 ver 0 > u64s 9 type backpointer 0:7340032:0 len 0 ver 0 [ 74.704551][ T5354] loop0 btree validate error [ 74.704554][ T5354] repair success (rewriting node) [ 74.742606][ T5354] bcachefs (loop0): accounting_read... done [ 74.747831][ T5354] bcachefs (loop0): alloc_read... done [ 74.752933][ T5354] bcachefs (loop0): snapshots_read... done [ 74.756516][ T5354] bcachefs (loop0): check_allocations... [ 74.762987][ T5354] bcachefs (loop0): bucket 0:9 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.773429][ T5354] bcachefs (loop0): bucket 0:9 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.781710][ T5354] bcachefs (loop0): bucket 0:10 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.790689][ T5354] bcachefs (loop0): bucket 0:10 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.796226][ T5354] bcachefs (loop0): bucket 0:11 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.803422][ T5354] bcachefs (loop0): bucket 0:11 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.811153][ T5354] bcachefs (loop0): bucket 0:12 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.816543][ T5354] bcachefs (loop0): bucket 0:12 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.823490][ T5354] bcachefs (loop0): bucket 0:13 gen 0 has wrong data_type: got (invalid data type), should be need_discard, fixing [ 74.831301][ T5354] bcachefs (loop0): bucket 0:13 gen 0 data type need_discard has wrong dirty_sectors: got 402, should be 0, fixing [ 74.837965][ T5354] bcachefs (loop0): bucket 0:14 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.844583][ T5354] bcachefs (loop0): bucket 0:14 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.850913][ T5354] bcachefs (loop0): bucket 0:15 gen 0 has wrong data_type: got journal, should be need_discard, fixing [ 74.856379][ T5354] bcachefs (loop0): bucket 0:15 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.863150][ T5354] bcachefs (loop0): bucket 0:32 gen 0 has wrong data_type: got btree, should be need_discard, fixing [ 74.867885][ T5354] bcachefs (loop0): bucket 0:32 gen 0 data type need_discard has wrong dirty_sectors: got 256, should be 0, fixing [ 74.874921][ T5354] bcachefs (loop0): bucket 0:34 gen 0 has wrong data_type: got user, should be need_discard, fixing [ 74.888541][ T5354] bcachefs (loop0): bucket 0:34 gen 0 data type need_discard has wrong dirty_sectors: got 16, should be 0, fixing [ 74.900181][ T5354] bcachefs (loop0): bucket 0:63 gen 0 has wrong data_type: got free, should be journal, fixing [ 74.905224][ T5354] bcachefs (loop0): bucket 0:63 gen 0 data type journal has wrong dirty_sectors: got 0, should be 256, fixing [ 74.927429][ T5354] bcachefs (loop0): bucket 0:64 gen 0 has wrong data_type: got free, should be journal, fixing [ 74.927447][ T5354] Ratelimiting new instances of previous error [ 74.938293][ T5354] bcachefs (loop0): bucket 0:64 gen 0 data type journal has wrong dirty_sectors: got 0, should be 256, fixing [ 74.938308][ T5354] Ratelimiting new instances of previous error [ 74.953720][ T5354] done [ 74.958480][ T5354] bcachefs (loop0): going read-write [ 74.975912][ T5354] bcachefs (loop0): journal_replay... [ 74.998053][ T1099] bcachefs (loop0): bucket journal seq in future (currently at 14) [ 74.998088][ T1099] u64s 13 type alloc_v4 0:26:0 len 0 ver 0: [ 74.998095][ T1099] gen 1 oldest_gen 1 data_type need_discard [ 74.998101][ T1099] journal_seq_nonempty 369098754 [ 74.998107][ T1099] journal_seq_empty 0 [ 74.998112][ T1099] need_discard 1 [ 74.998118][ T1099] need_inc_gen 0 [ 74.998124][ T1099] dirty_sectors 0 [ 74.998130][ T1099] stripe_sectors 0 [ 74.998136][ T1099] cached_sectors 0 [ 74.998142][ T1099] stripe 0 [ 74.998149][ T1099] stripe_redundancy 0 [ 74.998155][ T1099] io_time[READ] 1 [ 74.998161][ T1099] io_time[WRITE] 1 [ 74.998167][ T1099] fragmentation 0 [ 74.998173][ T1099] bp_start 8 [ 74.998178][ T1099] , , continuing [ 75.087408][ T5354] done [ 75.091015][ T5354] bcachefs (loop0): check_alloc_info... [ 75.092987][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.093023][ T5354] u64s 13 type alloc_v4 0:9:0 len 0 ver 0: [ 75.093033][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.093045][ T5354] journal_seq_nonempty 1 [ 75.093056][ T5354] journal_seq_empty 0 [ 75.093065][ T5354] need_discard 1 [ 75.093076][ T5354] need_inc_gen 1 [ 75.093086][ T5354] dirty_sectors 0 [ 75.093096][ T5354] stripe_sectors 0 [ 75.093106][ T5354] cached_sectors 0 [ 75.093117][ T5354] stripe 0 [ 75.093126][ T5354] stripe_redundancy 0 [ 75.093136][ T5354] io_time[READ] 1 [ 75.093145][ T5354] io_time[WRITE] 1 [ 75.093154][ T5354] fragmentation 0 [ 75.093163][ T5354] bp_start 8 [ 75.093171][ T5354] , fixing [ 75.145192][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.145207][ T5354] u64s 13 type alloc_v4 0:10:0 len 0 ver 0: [ 75.145215][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.145222][ T5354] journal_seq_nonempty 1 [ 75.145228][ T5354] journal_seq_empty 0 [ 75.145235][ T5354] need_discard 1 [ 75.145248][ T5354] need_inc_gen 1 [ 75.145282][ T5354] dirty_sectors 0 [ 75.145289][ T5354] stripe_sectors 0 [ 75.145295][ T5354] cached_sectors 0 [ 75.145301][ T5354] stripe 0 [ 75.145306][ T5354] stripe_redundancy 0 [ 75.145312][ T5354] io_time[READ] 1 [ 75.145318][ T5354] io_time[WRITE] 1 [ 75.145324][ T5354] fragmentation 0 [ 75.145331][ T5354] bp_start 8 [ 75.145337][ T5354] , fixing [ 75.191744][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.191776][ T5354] u64s 13 type alloc_v4 0:11:0 len 0 ver 0: [ 75.191785][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.191793][ T5354] journal_seq_nonempty 1 [ 75.191800][ T5354] journal_seq_empty 0 [ 75.191807][ T5354] need_discard 1 [ 75.191813][ T5354] need_inc_gen 1 [ 75.191822][ T5354] dirty_sectors 0 [ 75.191829][ T5354] stripe_sectors 0 [ 75.191835][ T5354] cached_sectors 0 [ 75.191842][ T5354] stripe 0 [ 75.191849][ T5354] stripe_redundancy 0 [ 75.191856][ T5354] io_time[READ] 1 [ 75.191863][ T5354] io_time[WRITE] 1 [ 75.191870][ T5354] fragmentation 0 [ 75.191876][ T5354] bp_start 8 [ 75.191884][ T5354] , fixing [ 75.238213][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.238229][ T5354] u64s 13 type alloc_v4 0:12:0 len 0 ver 0: [ 75.238238][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.238255][ T5354] journal_seq_nonempty 1 [ 75.238263][ T5354] journal_seq_empty 0 [ 75.238271][ T5354] need_discard 1 [ 75.238279][ T5354] need_inc_gen 1 [ 75.238287][ T5354] dirty_sectors 0 [ 75.238295][ T5354] stripe_sectors 0 [ 75.238302][ T5354] cached_sectors 0 [ 75.238310][ T5354] stripe 0 [ 75.238317][ T5354] stripe_redundancy 0 [ 75.238324][ T5354] io_time[READ] 1 [ 75.238333][ T5354] io_time[WRITE] 1 [ 75.238340][ T5354] fragmentation 0 [ 75.238348][ T5354] bp_start 8 [ 75.238356][ T5354] , fixing [ 75.283070][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.283082][ T5354] u64s 13 type alloc_v4 0:13:0 len 0 ver 0: [ 75.283088][ T5354] gen 0 oldest_gen 104 data_type need_discard [ 75.283094][ T5354] journal_seq_nonempty 1 [ 75.283098][ T5354] journal_seq_empty 0 [ 75.283103][ T5354] need_discard 1 [ 75.283108][ T5354] need_inc_gen 1 [ 75.283112][ T5354] dirty_sectors 0 [ 75.283117][ T5354] stripe_sectors 0 [ 75.283123][ T5354] cached_sectors 0 [ 75.283129][ T5354] stripe 0 [ 75.283137][ T5354] stripe_redundancy 188 [ 75.283143][ T5354] io_time[READ] 1 [ 75.283149][ T5354] io_time[WRITE] 1 [ 75.283156][ T5354] fragmentation 0 [ 75.283162][ T5354] bp_start 8 [ 75.283169][ T5354] , fixing [ 75.328331][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.328343][ T5354] u64s 13 type alloc_v4 0:14:0 len 0 ver 0: [ 75.328350][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.328355][ T5354] journal_seq_nonempty 1 [ 75.328358][ T5354] journal_seq_empty 0 [ 75.328363][ T5354] need_discard 1 [ 75.328368][ T5354] need_inc_gen 1 [ 75.328372][ T5354] dirty_sectors 0 [ 75.328377][ T5354] stripe_sectors 0 [ 75.328382][ T5354] cached_sectors 0 [ 75.328385][ T5354] stripe 0 [ 75.328392][ T5354] stripe_redundancy 0 [ 75.328399][ T5354] io_time[READ] 1 [ 75.328404][ T5354] io_time[WRITE] 1 [ 75.328412][ T5354] fragmentation 0 [ 75.328419][ T5354] bp_start 8 [ 75.328425][ T5354] , fixing [ 75.375582][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.375597][ T5354] u64s 13 type alloc_v4 0:15:0 len 0 ver 0: [ 75.375605][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.375612][ T5354] journal_seq_nonempty 1 [ 75.375619][ T5354] journal_seq_empty 0 [ 75.375627][ T5354] need_discard 1 [ 75.375634][ T5354] need_inc_gen 1 [ 75.375640][ T5354] dirty_sectors 0 [ 75.375647][ T5354] stripe_sectors 0 [ 75.375653][ T5354] cached_sectors 0 [ 75.375661][ T5354] stripe 0 [ 75.375668][ T5354] stripe_redundancy 0 [ 75.375675][ T5354] io_time[READ] 1 [ 75.375681][ T5354] io_time[WRITE] 1 [ 75.375687][ T5354] fragmentation 0 [ 75.375694][ T5354] bp_start 8 [ 75.375700][ T5354] , fixing [ 75.421094][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.421110][ T5354] u64s 13 type alloc_v4 0:32:0 len 0 ver 0: [ 75.421118][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.421126][ T5354] journal_seq_nonempty 2 [ 75.421132][ T5354] journal_seq_empty 0 [ 75.421138][ T5354] need_discard 1 [ 75.421145][ T5354] need_inc_gen 1 [ 75.421152][ T5354] dirty_sectors 0 [ 75.421158][ T5354] stripe_sectors 0 [ 75.421163][ T5354] cached_sectors 0 [ 75.421169][ T5354] stripe 0 [ 75.421174][ T5354] stripe_redundancy 0 [ 75.421179][ T5354] io_time[READ] 1 [ 75.421184][ T5354] io_time[WRITE] 1 [ 75.421189][ T5354] fragmentation 0 [ 75.421194][ T5354] bp_start 8 [ 75.421199][ T5354] , fixing [ 75.471749][ T5354] bcachefs (loop0): bucket incorrectly unset in need_discard btree [ 75.471771][ T5354] u64s 13 type alloc_v4 0:34:0 len 0 ver 0: [ 75.471782][ T5354] gen 0 oldest_gen 0 data_type need_discard [ 75.471792][ T5354] journal_seq_nonempty 5 [ 75.471801][ T5354] journal_seq_empty 134217728 [ 75.471811][ T5354] need_discard 1 [ 75.471821][ T5354] need_inc_gen 1 [ 75.471830][ T5354] dirty_sectors 0 [ 75.471840][ T5354] stripe_sectors 0 [ 75.471850][ T5354] cached_sectors 0 [ 75.471859][ T5354] stripe 0 [ 75.471869][ T5354] stripe_redundancy 0 [ 75.471879][ T5354] io_time[READ] 1 [ 75.471888][ T5354] io_time[WRITE] 512 [ 75.471898][ T5354] fragmentation 0 [ 75.471906][ T5354] bp_start 8 [ 75.471913][ T5354] , fixing [ 75.517958][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.517974][ T5354] u64s 13 type alloc_v4 0:63:0 len 0 ver 0: [ 75.517983][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.517991][ T5354] journal_seq_nonempty 0 [ 75.517998][ T5354] journal_seq_empty 0 [ 75.518006][ T5354] need_discard 0 [ 75.518014][ T5354] need_inc_gen 0 [ 75.518021][ T5354] dirty_sectors 256 [ 75.518037][ T5354] stripe_sectors 0 [ 75.518045][ T5354] cached_sectors 0 [ 75.518052][ T5354] stripe 0 [ 75.518060][ T5354] stripe_redundancy 0 [ 75.518068][ T5354] io_time[READ] 0 [ 75.518075][ T5354] io_time[WRITE] 0 [ 75.518083][ T5354] fragmentation 0 [ 75.518090][ T5354] bp_start 8 [ 75.518097][ T5354] , fixing [ 75.561464][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.561482][ T5354] u64s 13 type alloc_v4 0:64:0 len 0 ver 0: [ 75.561489][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.561497][ T5354] journal_seq_nonempty 0 [ 75.561504][ T5354] journal_seq_empty 0 [ 75.561511][ T5354] need_discard 0 [ 75.561518][ T5354] need_inc_gen 0 [ 75.561525][ T5354] dirty_sectors 256 [ 75.561533][ T5354] stripe_sectors 0 [ 75.561540][ T5354] cached_sectors 0 [ 75.561547][ T5354] stripe 0 [ 75.561554][ T5354] stripe_redundancy 0 [ 75.561561][ T5354] io_time[READ] 0 [ 75.561568][ T5354] io_time[WRITE] 0 [ 75.561575][ T5354] fragmentation 0 [ 75.561581][ T5354] bp_start 8 [ 75.561588][ T5354] , fixing [ 75.610290][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.610307][ T5354] u64s 13 type alloc_v4 0:65:0 len 0 ver 0: [ 75.610315][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.610323][ T5354] journal_seq_nonempty 0 [ 75.610329][ T5354] journal_seq_empty 0 [ 75.610337][ T5354] need_discard 0 [ 75.610343][ T5354] need_inc_gen 0 [ 75.610350][ T5354] dirty_sectors 256 [ 75.610357][ T5354] stripe_sectors 0 [ 75.610364][ T5354] cached_sectors 0 [ 75.610371][ T5354] stripe 0 [ 75.610377][ T5354] stripe_redundancy 0 [ 75.610384][ T5354] io_time[READ] 0 [ 75.610391][ T5354] io_time[WRITE] 0 [ 75.610397][ T5354] fragmentation 0 [ 75.610404][ T5354] bp_start 8 [ 75.610411][ T5354] , fixing [ 75.655785][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.655802][ T5354] u64s 13 type alloc_v4 0:66:0 len 0 ver 0: [ 75.655809][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.655816][ T5354] journal_seq_nonempty 0 [ 75.655823][ T5354] journal_seq_empty 0 [ 75.655829][ T5354] need_discard 0 [ 75.655835][ T5354] need_inc_gen 0 [ 75.655842][ T5354] dirty_sectors 256 [ 75.655848][ T5354] stripe_sectors 0 [ 75.655855][ T5354] cached_sectors 0 [ 75.655861][ T5354] stripe 0 [ 75.655867][ T5354] stripe_redundancy 0 [ 75.655874][ T5354] io_time[READ] 0 [ 75.655880][ T5354] io_time[WRITE] 0 [ 75.655887][ T5354] fragmentation 0 [ 75.655893][ T5354] bp_start 8 [ 75.655899][ T5354] , fixing [ 75.706886][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.706901][ T5354] u64s 13 type alloc_v4 0:67:0 len 0 ver 0: [ 75.706908][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.706915][ T5354] journal_seq_nonempty 0 [ 75.706922][ T5354] journal_seq_empty 0 [ 75.706928][ T5354] need_discard 0 [ 75.706934][ T5354] need_inc_gen 0 [ 75.706940][ T5354] dirty_sectors 256 [ 75.706946][ T5354] stripe_sectors 0 [ 75.706952][ T5354] cached_sectors 0 [ 75.706958][ T5354] stripe 0 [ 75.706965][ T5354] stripe_redundancy 0 [ 75.706971][ T5354] io_time[READ] 0 [ 75.706977][ T5354] io_time[WRITE] 0 [ 75.706983][ T5354] fragmentation 0 [ 75.706988][ T5354] bp_start 8 [ 75.706994][ T5354] , fixing [ 75.754412][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.754428][ T5354] u64s 13 type alloc_v4 0:68:0 len 0 ver 0: [ 75.754436][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.754443][ T5354] journal_seq_nonempty 0 [ 75.754449][ T5354] journal_seq_empty 0 [ 75.754455][ T5354] need_discard 0 [ 75.754462][ T5354] need_inc_gen 0 [ 75.754468][ T5354] dirty_sectors 256 [ 75.754474][ T5354] stripe_sectors 0 [ 75.754480][ T5354] cached_sectors 0 [ 75.754486][ T5354] stripe 0 [ 75.754492][ T5354] stripe_redundancy 0 [ 75.754498][ T5354] io_time[READ] 0 [ 75.754504][ T5354] io_time[WRITE] 0 [ 75.754510][ T5354] fragmentation 0 [ 75.754516][ T5354] bp_start 8 [ 75.754523][ T5354] , fixing [ 75.801883][ T5354] bcachefs (loop0): bucket incorrectly set in freespace btree [ 75.801900][ T5354] u64s 13 type alloc_v4 0:69:0 len 0 ver 0: [ 75.801908][ T5354] gen 0 oldest_gen 0 data_type journal [ 75.801915][ T5354] journal_seq_nonempty 0 [ 75.801922][ T5354] journal_seq_empty 0 [ 75.801929][ T5354] need_discard 0 [ 75.801935][ T5354] need_inc_gen 0 [ 75.801942][ T5354] dirty_sectors 256 [ 75.801949][ T5354] stripe_sectors 0 [ 75.801956][ T5354] cached_sectors 0 [ 75.801962][ T5354] stripe 0 [ 75.801969][ T5354] stripe_redundancy 0 [ 75.801975][ T5354] io_time[READ] 0 [ 75.801981][ T5354] io_time[WRITE] 0 [ 75.801987][ T5354] fragmentation 0 [ 75.801993][ T5354] bp_start 8 [ 75.802000][ T5354] , fixing [ 75.841458][ T4703] Bluetooth: hci0: command tx timeout [ 75.862467][ T5354] done [ 75.870900][ T5354] bcachefs (loop0): check_lrus... [ 75.872204][ T5354] bcachefs (loop0): incorrect lru entry: lru fragmentation time 134217728 [ 75.872214][ T5354] u64s 5 type set 18446462598867058688:34:0 len 0 ver 0 [ 75.872219][ T5354] for u64s 13 type alloc_v4 0:34:0 len 0 ver 0: [ 75.872224][ T5354] gen 1 oldest_gen 1 data_type free [ 75.872228][ T5354] journal_seq_nonempty 5 [ 75.872232][ T5354] journal_seq_empty 134217728 [ 75.872236][ T5354] need_discard 0 [ 75.872240][ T5354] need_inc_gen 0 [ 75.872244][ T5354] dirty_sectors 0 [ 75.872248][ T5354] stripe_sectors 0 [ 75.872253][ T5354] cached_sectors 0 [ 75.872258][ T5354] stripe 0 [ 75.872262][ T5354] stripe_redundancy 0 [ 75.872266][ T5354] io_time[READ] 1 [ 75.872269][ T5354] io_time[WRITE] 512 [ 75.872273][ T5354] fragmentation 0 [ 75.872277][ T5354] bp_start 8 [ 75.872281][ T5354] , fixing [ 75.918027][ T5354] done [ 75.926870][ T5354] bcachefs (loop0): check_btree_backpointers... [ 75.928072][ T5354] bcachefs (loop0): backpointer for nonexistent alloc key: 0:220176799:0 [ 75.928088][ T5354] u64s 9 type backpointer 0:57718026928128:0 len 0 ver 0: bucket=0:220176799:128 btree=extents level=1 data_type=btree suboffset=0 len=256 gen=0 pos=SPOS_MAX, fixing [ 75.947875][ T5354] done [ 75.950794][ T5354] bcachefs (loop0): check_backpointers_to_extents... done [ 75.954136][ T5354] bcachefs (loop0): check_extents_to_backpointers... [ 75.955099][ T5354] bcachefs (loop0): scanning for missing backpointers in 4/128 buckets [ 75.963014][ T5354] done [ 75.964870][ T5354] bcachefs (loop0): check_alloc_to_lru_refs... done [ 75.968516][ T5354] bcachefs (loop0): check_snapshot_trees... done [ 75.973572][ T5354] bcachefs (loop0): check_snapshots... done [ 75.975926][ T5354] bcachefs (loop0): check_subvols... [ 75.976990][ T5354] bcachefs (loop0): running recovery pass reconstruct_snapshots (21), currently at check_subvols (24) - rewinding [ 75.987004][ T5354] bcachefs (loop0): bch2_check_subvols(): error restart_recovery [ 75.992972][ T5354] bcachefs (loop0): reconstruct_snapshots... [ 75.993288][ T5354] bcachefs (loop0): snapshot node 4294967295 from tree 4294967295 missing, recreating [ 76.014241][ T5354] done [ 76.016308][ T5354] bcachefs (loop0): check_snapshot_trees... done [ 76.019814][ T5354] bcachefs (loop0): check_snapshots... done [ 76.022938][ T5354] bcachefs (loop0): check_subvols... [ 76.023425][ T5354] bcachefs (loop0): subvolume 1 is not set as snapshot but is not master subvolume, fixing [ 76.031583][ T5354] done [ 76.034688][ T5354] bcachefs (loop0): check_subvol_children... done [ 76.037631][ T5354] bcachefs (loop0): delete_dead_snapshots... done [ 76.041035][ T5354] bcachefs (loop0): check_inodes... done [ 76.044192][ T5354] bcachefs (loop0): check_extents... done [ 76.046703][ T5354] bcachefs (loop0): check_indirect_extents... done [ 76.051074][ T5354] bcachefs (loop0): check_dirents... done [ 76.054895][ T5354] bcachefs (loop0): check_xattrs... done [ 76.057956][ T5354] bcachefs (loop0): check_root... done [ 76.060947][ T5354] bcachefs (loop0): check_unreachable_inodes... done [ 76.063497][ T5354] bcachefs (loop0): check_subvolume_structure... done [ 76.066036][ T5354] bcachefs (loop0): check_directory_structure... done [ 76.068507][ T5354] bcachefs (loop0): check_nlinks... done [ 76.072465][ T5354] bcachefs (loop0): check_rebalance_work... done [ 76.075374][ T5354] bcachefs (loop0): resume_logged_ops... done [ 76.078370][ T5354] bcachefs (loop0): delete_dead_inodes... done [ 76.083177][ T5354] bcachefs (loop0): set_fs_needs_rebalance... done [ 76.094307][ T5354] ------------[ cut here ]------------ [ 76.096826][ T5354] kernel BUG at fs/bcachefs/bset.c:652! [ 76.100132][ T5354] Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI [ 76.102897][ T5354] CPU: 0 UID: 0 PID: 5354 Comm: syz.0.0 Not tainted syzkaller #0 PREEMPT(full) [ 76.106711][ T5354] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 [ 76.111334][ T5354] RIP: 0010:__build_ro_aux_tree+0x17e1/0x1800 [ 76.114046][ T5354] Code: 0a 9d fd be 01 00 00 00 48 c7 c7 e0 13 96 8e 48 89 da e8 c2 af de 00 e9 18 f4 ff ff e8 08 0a 9d fd 90 0f 0b e8 00 0a 9d fd 90 <0f> 0b e8 f8 09 9d fd 90 0f 0b e8 f0 09 9d fd 90 0f 0b 66 66 66 66 [ 76.122233][ T5354] RSP: 0018:ffffc9000d27ebc0 EFLAGS: 00010246 [ 76.124645][ T5354] RAX: ffffffff8422b340 RBX: dffffc0000000000 RCX: 0000000000100000 [ 76.128139][ T5354] RDX: ffffc9000e172000 RSI: 00000000000fffff RDI: 0000000000100000 [ 76.131602][ T5354] RBP: ffffc9000d27ed90 R08: ffff888000e1c880 R09: 0000000000000002 [ 76.134877][ T5354] R10: 000000000000ffff R11: 0000000000000002 R12: ffff888056560191 [ 76.137843][ T5354] R13: 0000000000000130 R14: 0000000000000001 R15: 0000000000000090 [ 76.140982][ T5354] FS: 00007f391659f6c0(0000) GS:ffff88808d007000(0000) knlGS:0000000000000000 [ 76.144689][ T5354] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 76.147477][ T5354] CR2: 00007f56227909c0 CR3: 0000000044079000 CR4: 0000000000352ef0 [ 76.150483][ T5354] Call Trace: [ 76.152008][ T5354] [ 76.153505][ T5354] ? __pfx___build_ro_aux_tree+0x10/0x10 [ 76.155908][ T5354] ? __asan_memset+0x22/0x50 [ 76.157859][ T5354] bch2_bset_build_aux_tree+0x3f5/0x570 [ 76.160254][ T5354] bch2_btree_post_write_cleanup+0x630/0xad0 [ 76.163031][ T5354] ? bch2_btree_node_write_trans+0x157/0x760 [ 76.165405][ T5354] bch2_btree_node_write_trans+0x17b/0x760 [ 76.167883][ T5354] ? __btree_node_flush+0xc0/0x430 [ 76.170053][ T5354] ? __btree_node_flush+0xc0/0x430 [ 76.172230][ T5354] ? six_lock_ip_waiter+0xe6/0x170 [ 76.174395][ T5354] ? __pfx_bch2_six_check_for_deadlock+0x10/0x10 [ 76.177290][ T5354] ? bch2_btree_node_write_trans+0x157/0x760 [ 76.179871][ T5354] __btree_node_flush+0x323/0x430 [ 76.182077][ T5354] ? __btree_node_flush+0xc0/0x430 [ 76.184344][ T5354] ? __pfx___btree_node_flush+0x10/0x10 [ 76.186993][ T5354] bch2_btree_node_flush0+0x27/0x40 [ 76.190107][ T5354] ? __pfx_bch2_btree_node_flush0+0x10/0x10 [ 76.193395][ T5354] journal_flush_pins+0x8e3/0xe90 [ 76.196065][ T5354] journal_flush_done+0x112/0x810 [ 76.198275][ T5354] bch2_journal_flush_pins+0x155/0x250 [ 76.200648][ T5354] ? __pfx_bch2_journal_flush_pins+0x10/0x10 [ 76.203205][ T5354] ? up+0xde/0x150 [ 76.204871][ T5354] ? bch2_run_recovery_passes+0x18e/0x210 [ 76.207609][ T5354] bch2_fs_recovery+0x2775/0x3a50 [ 76.209689][ T5354] ? __pfx_bch2_fs_recovery+0x10/0x10 [ 76.211915][ T5354] ? __lock_acquire+0xab9/0xd20 [ 76.214341][ T5354] ? __mutex_trylock_common+0x153/0x260 [ 76.216887][ T5354] ? __lock_acquire+0xab9/0xd20 [ 76.219127][ T5354] ? __lock_acquire+0xab9/0xd20 [ 76.221116][ T5354] ? bch2_fs_start+0xa0f/0xda0 [ 76.223105][ T5354] ? up_write+0x1c4/0x420 [ 76.224902][ T5354] ? bch2_fs_start+0x5e7/0xda0 [ 76.226828][ T5354] bch2_fs_start+0xaaf/0xda0 [ 76.228747][ T5354] ? bch2_fs_start+0x5e7/0xda0 [ 76.231462][ T5354] ? __pfx_bch2_fs_start+0x10/0x10 [ 76.234469][ T5354] ? sget+0x267/0x620 [ 76.236247][ T5354] bch2_fs_get_tree+0xb39/0x1520 [ 76.238376][ T5354] ? __pfx_bch2_fs_get_tree+0x10/0x10 [ 76.240606][ T5354] ? __pfx_vfs_parse_comma_sep+0x10/0x10 [ 76.242956][ T5354] vfs_get_tree+0x92/0x2b0 [ 76.244935][ T5354] do_new_mount+0x2a2/0x9e0 [ 76.247015][ T5354] ? ns_capable+0x8a/0xf0 [ 76.248831][ T5354] ? __pfx_do_new_mount+0x10/0x10 [ 76.251523][ T5354] ? path_mount+0x61c/0xfe0 [ 76.253953][ T5354] ? user_path_at+0x44/0x60 [ 76.256514][ T5354] __se_sys_mount+0x317/0x410 [ 76.258583][ T5354] ? __pfx___se_sys_mount+0x10/0x10 [ 76.260806][ T5354] ? do_syscall_64+0xbe/0x3b0 [ 76.262849][ T5354] ? __x64_sys_mount+0x20/0xc0 [ 76.264974][ T5354] do_syscall_64+0xfa/0x3b0 [ 76.266837][ T5354] ? lockdep_hardirqs_on+0x9c/0x150 [ 76.268757][ T5354] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 76.271596][ T5354] ? clear_bhb_loop+0x60/0xb0 [ 76.274394][ T5354] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 76.278030][ T5354] RIP: 0033:0x7f39157903ca [ 76.280059][ T5354] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb a6 e8 de 1a 00 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 [ 76.289088][ T5354] RSP: 002b:00007f391659ee68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [ 76.293319][ T5354] RAX: ffffffffffffffda RBX: 00007f391659eef0 RCX: 00007f39157903ca [ 76.297433][ T5354] RDX: 000020000000f640 RSI: 000020000000f680 RDI: 00007f391659eeb0 [ 76.301223][ T5354] RBP: 000020000000f640 R08: 00007f391659eef0 R09: 0000000000000000 [ 76.304482][ T5354] R10: 0000000000000000 R11: 0000000000000246 R12: 000020000000f680 [ 76.307803][ T5354] R13: 00007f391659eeb0 R14: 000000000000f633 R15: 0000200000000280 [ 76.311715][ T5354] [ 76.313382][ T5354] Modules linked in: [ 76.316075][ T5354] ---[ end trace 0000000000000000 ]--- [ 76.325620][ T5354] RIP: 0010:__build_ro_aux_tree+0x17e1/0x1800 [ 76.331150][ T5354] Code: 0a 9d fd be 01 00 00 00 48 c7 c7 e0 13 96 8e 48 89 da e8 c2 af de 00 e9 18 f4 ff ff e8 08 0a 9d fd 90 0f 0b e8 00 0a 9d fd 90 <0f> 0b e8 f8 09 9d fd 90 0f 0b e8 f0 09 9d fd 90 0f 0b 66 66 66 66 [ 76.341704][ T5354] RSP: 0018:ffffc9000d27ebc0 EFLAGS: 00010246 [ 76.345102][ T5354] RAX: ffffffff8422b340 RBX: dffffc0000000000 RCX: 0000000000100000 [ 76.350393][ T5354] RDX: ffffc9000e172000 RSI: 00000000000fffff RDI: 0000000000100000 [ 76.354209][ T5354] RBP: ffffc9000d27ed90 R08: ffff888000e1c880 R09: 0000000000000002 [ 76.357536][ T5354] R10: 000000000000ffff R11: 0000000000000002 R12: ffff888056560191 [ 76.361351][ T5354] R13: 0000000000000130 R14: 0000000000000001 R15: 0000000000000090 [ 76.364878][ T5354] FS: 00007f391659f6c0(0000) GS:ffff88808d007000(0000) knlGS:0000000000000000 [ 76.369179][ T5354] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 76.372138][ T5354] CR2: 00007f56227909c0 CR3: 0000000044079000 CR4: 0000000000352ef0 [ 76.376085][ T5354] Kernel panic - not syncing: Fatal exception [ 76.378943][ T5354] Kernel Offset: disabled [ 76.380913][ T5354] Rebooting in 86400 seconds..