program: r0 = socket$nl_netfilter(0x10, 0x3, 0xc) r1 = dup(r0) r2 = io_uring_setup(0x2fe8, &(0x7f0000000580)={0x0, 0x2bc8, 0x8, 0xfffffffe, 0x3ba}) io_setup(0x1, &(0x7f00000004c0)=0x0) r4 = syz_init_net_socket$llc(0x1a, 0x2, 0x0) bind$llc(r4, &(0x7f0000000bc0)={0x1a, 0x2, 0xc, 0x18, 0x4, 0x4a, @link_local={0x1, 0x80, 0xc2, 0x0, 0x0, 0xe}}, 0x10) close_range(r2, 0xffffffffffffffff, 0x0) syz_emit_ethernet(0x46, &(0x7f0000000700)={@local, @multicast, @void, {@ipv6={0x86dd, @dccp_packet={0x9, 0x6, "7e89aa", 0x10, 0x21, 0xff, @dev={0xfe, 0x80, '\x00', 0x1d}, @local, {[], {{0x4e24, 0x4e20, 0x4, 0x1, 0x9, 0x0, 0x0, 0x7, 0x0, "987a19", 0x6, "4b478c"}}}}}}}, 0x0) r5 = socket$pppl2tp(0x18, 0x1, 0x1) io_submit(r3, 0x1, &(0x7f0000000700)=[&(0x7f0000000000)={0x0, 0x0, 0x0, 0x1, 0x0, r2, 0x0, 0x0, 0x0, 0x0, 0x0, r5}]) sendmsg$IPSET_CMD_CREATE(r1, &(0x7f0000000040)={0x0, 0x0, &(0x7f0000000000)={&(0x7f0000000080)={0x4c, 0x2, 0x6, 0x5, 0x0, 0xf0ffff, {}, [@IPSET_ATTR_PROTOCOL={0x5, 0x1, 0x6}, @IPSET_ATTR_FAMILY={0x5, 0x5, 0xa}, @IPSET_ATTR_SETNAME={0x9, 0x2, 'syz1\x00'}, @IPSET_ATTR_REVISION={0x5}, @IPSET_ATTR_TYPENAME={0x13, 0x3, 'hash:net,iface\x00'}]}, 0x4c}}, 0x4008) r6 = socket$nl_netfilter(0x10, 0x3, 0xc) bpf$MAP_CREATE(0x0, 0x0, 0x0) sendmsg$IPSET_CMD_CREATE(r6, &(0x7f0000000240)={&(0x7f0000000100)={0x10, 0x0, 0x0, 0x20}, 0xc, &(0x7f00000001c0)={&(0x7f0000000180)={0x38, 0x2, 0x6, 0x201, 0x0, 0x0, {0x2, 0x0, 0xa}, [@IPSET_ATTR_DATA={0x24, 0x7, 0x0, 0x1, [@IPSET_ATTR_MAXELEM={0x8, 0x13, 0x1, 0x0, 0xfff}, @IPSET_ATTR_PORT_TO={0x6, 0x5, 0x1, 0x0, 0x4e24}, @IPSET_ATTR_LINENO={0x8, 0x9, 0x1, 0x0, 0x8b}, @IPSET_ATTR_PORT={0x6, 0x4, 0x1, 0x0, 0x4e21}]}]}, 0x38}, 0x1, 0x0, 0x0, 0x40}, 0x40) sendmsg$IPSET_CMD_TEST(r6, &(0x7f0000000300)={0x0, 0x0, &(0x7f0000000140)={&(0x7f0000000200)={0x38, 0xb, 0x6, 0x801, 0x0, 0x0, {0x6, 0x0, 0x2}, [@IPSET_ATTR_PROTOCOL={0x5}, @IPSET_ATTR_DATA={0x10, 0x7, 0x0, 0x1, [@IPSET_ATTR_IP={0xc, 0x1, 0x0, 0x1, @IPSET_ATTR_IPADDR_IPV4={0x8, 0x1, 0x1, 0x0, @multicast1}}]}, @IPSET_ATTR_SETNAME={0x9, 0x2, 'syz1\x00'}]}, 0x38}}, 0x4800) syz_mount_image$bcachefs(&(0x7f000000f640), &(0x7f0000000140)='./file0\x00', 0x0, &(0x7f0000000340)=ANY=[@ANYBLOB="cab2e3f067726f756e645f636f6d7072657373696f6e3d7a7374642c646174615f636865636b73756d3d6e6f6e652c696e6f6465735f7573655f6b65795f63616368652c6261636b67726f756e645f636f6d7072657373696f6e3d6c7a342c6572726f72733d636f6e74696e75652c67727071756f74612c7374725f686173683d63726336342c666f776e65723e", @ANYRESDEC=0x0, @ANYRESOCT=r0], 0x0, 0xf61b, &(0x7f000000f680)="$eJzs2QlUzl+j9/+rOUKDqYiKCgmRUpkiFaJJKSpFRSghZUwKDQhlSiRDaEJlSNIgRApJEyIKlTENiOi/7vvhnPv8nvt3zvP8zjrnrP963q+1rrWvvfe3z3d/93dfw+4SAAAAAAD+n5C/1eezeR/jO0HurQFTr3gFCqRE/t4u+fsAmV/lmv+pEeK/k4So/N/LP66LhMtq5fvSTZwCZzZ9t9py7+aVc0dlH0UaTUlss2h8np3b8R/l/l5PGv9aF2oVEgi2THD+HHKzsPff2oQEAoGIkMwmgUBWSO6mrNAfIrS+CQQCt18V5T90ZrRqL/xbGbhd4t+0S//hONb7/9skf60zYe3skJoTJhfTTAw/1/ukGWz610OE/nbM5V/rSSDo5vLHvxf+J7kLXD00NJa6rz2mmVjn/L63R2LM9FmD7ezPdOnkdCRsTeTI2NBnNvOHnu8sJhAIOv16/M3v1Sr/++S/SkuBQND5H/L1/oPrGvB/eP3D/6Su9KsU/1VK/Qc5v/tV/lD/49z88UX8m9gfyq7/wfn+s/7ZPftn/my8/7e6/Bfl/kd5v6/z99tY5q9S4/8yX+T3Q0ggLCQQ/ZfTeQr96xoR/MN9ExII/f1eSv5LXfjvdeF/GK/Yvx2/0B/qwn+oi4j94br+ft5fC01ESOjftv8+7g/tv+dB9Fe7yj+5N/9o1p+0K/wqJX+9UL/+rgv++OR/kfrfnvzLdf3d73E1/jtj+e8g/A/vQf+s/V9u/K+bIfWrTUpI7n/7m45/4nef6Iguh0JkRM1l/mQcQilCv/KF/lK+sHjL9bmGyhryf5bvIvwrX/gv5Y+ZE7Jh1f0A9T/N3/07X+Qv5b9IOlXjIR/a90/np/H3/Ij+pfxBOv2DJe/Jyw/+s/yjv/Ml/1K++tvTTVn3gsr/dPxav+en01/K92zsusjr6IqKP80X/M7v/JfyJ26v9zCMf7rnT/Nzf8+P1F/KTz9kXi0x88YlrT/LL/6d3/Uv5Q8LGvTdZKvJ2D9dn4a/50fmL+XLzFjh+nipSJDkn+Vv+j/9hAUA/DPdf33HCv1V//f2qTL/zj71P+sf9gtRMkL/6ztfl1+P/8q92t/O0+2/MB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P8Plh0tysH3HH1SRfutftCYtONQvamvTVCPtaK/+iVEBYK/PX8iLBA8k9h+WWrZ6AnSOSMOPrndmqK7/sQribbnerX+RdIRIbXnLZPe6RXb5Qz83CnJaciZsfGFLnElrxz8+nVovh9oUrX4kWB3XL8MwQzlKz5dwt1jPAqepR1ufnor6eeu6mMPqxXcTGRa8o1kEhJ+xJ9PCxRdO86nYLVtzpdyryX5kjpp8y+ME/NKr0m3n1u28uzApYp+ixfUTJsx5M7a8p/9S8QcTUZkuVtejxs+9Ou8Po63TVZZi+ycVfr1w+q8NTuq3OTCiz+NUMspiQjxL3Q671G44cn7kt39lGqnrctaUPTlctIMwd2I3f7OJx1lbEy7hvz0Pnu0ov7ABvO2AepKR7fXbhzYWjZiS8+iaUaDDtyU8gmcqZsne/ejfLzjoNGvl+eOyn4StKjH9lleIZonm65KKWdfLp5/03v6wmp7O8Xgj6pjIjrsOmwk5z9OfSWx4vD5O3Gp2yTt0/o92XRWSK9u7ffMRQNWPGvwN59mMcDX8rua3eFDng7HPNoWJqQoD675kR5sfdMw7K1B4LPOBaMdw09c0bH81v2Jyt5OKvbGtW298vu6hDzLvD40dkC4yKvxspf3Nbklxh+U+5F/IUU5Jd7f5YxlS5f5pQ++qvleO1EVpvBuSdB86TH+PmLRb8Qky87cv/vQ+1PukVdPC5/6G16TmnymTsezn07C4CaLmynRpvklh27VWPUL/zhoeE6o5FLdGtGbDSWJNnffhc39JLTMbff+o6rH7wXFnqnKFAnVtjbRe/5q6hxpcVFLUc1BqdoaM01lSxxK+pv3qAgwFNJXLJAuScqaX3fqsE12yoWQxBSZKbIv577fePjH1nOT7tg8uPxYentWokC73fr1IXmfFt3u34c7ZgXmLkj44uZ85ITT8knfTpcfuRq6JL00aPkIG5G0CR81zD3r5dXdFEtPRC3VVVohHbp0b9+QnzekbacqRHV3zX6+4fzuvv3LN4y8PGlWZwfrveZ7Ml26KKlrf37c4bBk0RXvB2pfUh4Hud5Vmv78uptk87oX34WONXYpfCV0LS7E+8mPbtWNSoK+e8tsTgVNP6q0//Q0l0Lr6JznqtKpKWNlLvg4TbgX1alMQnhXcZd76md7uGaLKopfSr2t0bRvluD08qtX3V7F3NIwEt+gdkC8aoJr50+PfMaNa5y3ppuR+tkhM+9r1YRGu4X0My/Lb1u4xf+5j8NajaKAnC8uYk0qi8+PdX39pWNkwnoDz3tWus3lX+85dOkxMWj/20mdxj174GNeG7fifIZMqU/b6ajBpqsrg+9X7H8Y1/dNbrCm0fCObbeXChW27Hy7SmHdm9j0z/uXeWXMG660ZtrJWcld05TSZNbMOG7vHn1pwKxe8YEfNi6oOP55gu8Sv9JOH102Pa0P+zxmxdrSscaHFtxvPZ0U+fnOOKFtBzyE++g6ise2FeWc0uu3s6HEfb3rQTnDjqdrD6Y8yu7tHhrxQuTekH6POoo1JmqJrrow8/K6vRt9X8q1S3fSXn0p7EiZ5faEF3Iyz7f2rYu5Nydj3169S7OvGnvvj1v/ea/qgUedL9Qftrsje+Tc5IJlF6bF6Oj2//hZZ1hQv6GZ9V0Tyjo2bJyzRH3KpIbrIzcNSFcXGXbtZLv2mv0jFvZ6ayVlPWnhuZUvf7rJajZcXyIZ+aF+Y0NeS3fd+W9/FBc9POeip3Hp6HSR0Q8sNnc+JLy66tukFXJVfqdOybrLfdyz+JFwkP0YY4fDF21bMu9FZWw5tDh4vmzrzEDzkRsfrZy1PTXZQeAs1a5wcEihkLXR27PrjOz7NKr4Bd0al9Vcuzu1q8y+K3m354Y9XeBsMUf/4Gh/4/4H95TcHbk5TFP0dMGGNxXhtxyLh1+MPe3vIzMuws31qbaZ7Qv5Ye/MX1aNVF9RmlLXK76ydG+o8Om78XLW0/1mXLXZuMfkqO+7aOeaTLVYy6MLk3ucm3hA6tWyFU0S5wdN2VWftdm7Japtv8o+J79tzUrKeXVHom6rrr7y+ewK6z7XtS/MfrQ113xEx+3sOOu+M6L8G9fdnBwmLOydn7DsjlKkyySd/gHHlgj2LZvRacHD1T4mip+6VpmGiGS7Gfpk7Z4R5/Yw6v3E+1pj7SNHBRoenCWxfsiK8yqrnYYauL30GXnF77P/Ake7xXVZHY4pDx6GSXvnylgWjGj3ezqksHGMgUrlpQ0Lyh37ze0e9qL9dGOv4HvH+yZ/Xlnj1SN/XicdfUmJwJM6T2p6xFvNOS2/uilHKEA0wDNewjIpOik36JqXV+KWZN35HWLVVo+8o1c1FoYY7tPIH2N8/L2vjlK/PlIGhzbPuRzrFhEqq7lXrr5tXLc8zaumwsPSukc/Ujl8Kqz+4aIXdZJzXk6vuzdBb/n7RV0aP0rN+DRINU7x3otvm8c9bansEjAvas2F5fcvvxq+QCCzWLfW4/mTNuFfn2h52Urik0oOzO8pbays+dJk0n2z3uuNJw4b8WRFcc1b4YY3Mic3HO44Z1NefLqvd3H7Tb81Ih5jxnq992w77BE+/E3G0uCwwoKItmiJO+XzEqXmtnZrkJlxbcrmLbYRh/VlotYkvUhbH16U2v+SyxCxjl3qpWmmzTKvNw9T+3Dp8+ut1aNNji57aphfuNe6ZN9U8bvPwgtOJ/V58WrUsLlZyR7R/mvmdJO+9qnApjL11IeofqtNJ9hllszZGXX76uyI8GExZ/qc3pYyOc/45wChhS9b17ntUXTW1VraeZd4zW3d2nbjpmdpks491gjexdUMep0levHq5iSH+jM/nLsXBdU5dfE4s3foquEX5Y4q944r29jPcsmEQ1qRoYFDjoT9lD/7cbKxwOSt+oXHM9+LR8Qt7TE4frfsoOtucyYX3TZVyNK5WrF9utn61JXK40auuWxUJ+wX4azyTibii1CPBU1jxkl9stS59XbgZfUcq3P274qNehuF9x6yXWOyr8+aXhm7C2X9HPZsnqKa8STz+kzzM2vkrmhOH75G1LDNV2pLmYXiiODA27YXv2wb5Ccc1U115qnm9vHGyVHLN0pZ9aqJUTU9MnHhWovk/s8fdcuxsHwnbtfRevLhxhvDfL98UVJtu1Iv7r08Qu3N6N1vFhsF7nPSFO2lO3uAT+Sh4xrnZLfL2rUuiDyw6LaDVm65WOOV1vEqq5fsOry9oYf54IElFzNzji1M6rJUZ9rSSqvqWWlfxS+Li17svOjl6MZrZy2n2Z7PCBW/e6a7cY3d68Eri207Blbu+NRaGjDJJKHlY3lv8fRK+8r7Fu+MY5JldVStHLQ37XpuP3iTo9HEn99FslsCPb13HZhosmxRgrVkopvbuPHJc5y9M7zi/Ibsn7R//pHlQ252Kn4TtGrJDwWvjYpiW3u7GKj92CM2dHLkSRFz8a89h9i7zhRakFt3veLx9IJZkSrvQt8+sV4nmtzllfJXA7nFx8P3BA6/Ir/fatGKZclqo0dlZ7jGTtb+cNrAovLFNs1DCT1v7JtdLhSgHfXGelJT6MxbFZvWrXyWIe+3+6hzrdojad22PlVK2o/6O9l7W8QObY0KWH9ZeughxaXlonu0P5QMk60wKW382U1u08Xjlrr99NOGOiZX/jSzEIvcrWDpFxT/sd9DEYc+4dZ3rvUIGFt16uwql6KdLhrhrc4XpffZDjoT2Pe26elpl9rl9ourTrjstCU5T7E+9pyEwoiV6irubZaX2lfZFu++5BuWXKQ3/cfU1BmmcbLSp2yWTGhx63ax/cJORQeDLMVndnN7/RjSV+XCvqjV6trhN2e/eSCztrSXfpi9t+FUoy+6eyQPfg4Ran0vGFx/1kFt004RA1u598Yf5xsmzDwQf0hh47yKRdffD9vrsu+yw8JVO18Ou6NpvnzSPeOpI2fd18nQWbfz5+qzlbWqyUc7/XzfU7l6cc3oHnqBcyeWbkx+qxnjP/jK60lVhVMutE66dW+Gxxc1a/Gi8Xtnr91zfvjXi8bz+hmGGheY+h2Z3Hzuo913OaXV95u1dwU8u9mkOv7TKZW90XLP9yj8+GrysqvEdLfFTcKxcanZ58xUXtt3+zrOLC9dd/qnj1s36Cg377vwOsgm8tnw4NYtl9ZOSD+ZZN1gXtj1ppn7wl7pC7PN7r3WWhBjbDfm6LzVNqH3NQx7bnG4fSjyg2GR84ToB3JfZzsNdWmR+l5Xvy3tzJBU97s580+OWmLcqCM/fNgkb9fgZ7UPVmotH5z3xDnoS0I3dwu/F5WPlQt2v5nUEWJWN0Dl1eKPIuLLh53NsXwwcdAl6fIHL6ZsuH5pi5l6zO3T4xSeqYyeb+YVb+s+WqNN+cZrVaVOThPOeYetmxwy+Xj1j6sbjve26vJW64doxKz7l1vPqrtYqx1qf2gW9dzbarrvwf5u8W+VNhm0ODy9F927b8ugyISpWs2Bo7TTk2N1swtz73jOX5qtUJb7Kv1p8CuRXRM1zb91mqU6PtBjgOeVnTM2GAmtt3UVDZ51VrqpY1o/2Y09lyfFWSy49M7CQqF/4qjehWGdz5R0Epvse3hBwAcZtXdP3c/sDhFvf62vO0N1lni8WtlXqb26z+O27s2uS3gdbz/IY+iKwUsrtLJtFqm6y+pGevdsDhGW+9EycYSd9v6tT5rPvDY7f6J6klPMrOyNorHNbl0yzppb5c4OXWw50TP+irbq0f6j97jd9SnaZ1aTqqNt/eJMU4ti+8+fGwtS5Q7N+3h8cp+oRE+xEbbrNzYrem7TdP+QoDUu4UPyOf+hwZePPsocFdIidezGMZnoYq3I4Ns/XI1fd5rsIdHL+ce3G8rGXzc0SfaJdS3aqb/OctF3yyHrnga/uJg5u0W/MFdkU+GitOHj8wtefJtw9taIB65hHV6HhnztY3s05dGjLlsSDqbsaxS9furl9bNv2zSV+/l2aFt4dslZEL5YvObslNdnLX1/KleNf5fzyK6w1bXluc1wP+8ph4uOued1HJyptf5n8abzgVmOWRc/OKaWbrarLmoQ6rR/XdnIaqnCkwuKGyQjTt+Y1Oln9dt7TgWDCqxiZ95rq3JM/VTneEzj7pQ7b2/ITd15R2fIW23jfhKDnBKXhCz31dtcd1HlxHT9DVG7lI4PWxcftXRVwoDlfgLp6ZKfghQWbXdZttK7dbFRX8OrW9enP22aK1mvOCloX+D0VzY9AsbOkRL+OvjR1ddql/tKjOq9x/JN7oGES5WiBnuS+9b3ODjly8kBUe9uOE7fOKn3sp/KJ0Jv7j0iLepjkaRjoFDtb3jbeq241scQoxPjD8tuUvKIElH13GB/47r0j5CqFKMZvW4FGK1arzEtRPhbt7p5PSIdRvaeodTTxmyT4+29rz7s6mg8F/H8Z/XAko9SAbH6A7SCuytPFTZUF3vSNnlXjMyOBv9xa/UHHQnXeL3ePWjEJ5sR852XJU+qko+fN75f7xc58YJOvgWJAzss67TeGfu21ohaLXoXuHnyktaKJ+8Tr+QuXGjnazx53ptp1QdVO1Rr4tdMsnDRHPzg5rqMTxnDHbpPu3ZYNd05abX4mGM3xy6vnRnbfXxsX7PkDWnLRc0/1FvpTXTes9tQfMcB97tjstSPfXvS+XCUn+/YWFOZ0yY+ZW2LnzdLWmywO+Z1de1al4NLPAuWbLN4MTGspltel55N7wUG0b3u+Pn+zL2yI/jYnHuqAT4mgxbv8a5foNdp/+nGMi3Rqd2edh1rZ2RvJPnKVfT9gcK4GBUJA4nS9+1ra99FSK+RPid5xjnx3Yz2jn69z5oXhWdfun7KIc33vNykWzPWpfonPJSxvnrsgZ7D+U+3ZxbEikbq3DmhZfW2rGd74dGrYzemNbq9njbNYdP8ZWa3DcdPCFHvKN/gqDKqp399SvmxOimvCQ5p1R/Tj3T/tGB8uL+XRWWL+4A9K5O+6U66tGHymwrLDzEO33+aHZhikGdnpiJZ4RnR475C1bMXYwxMXM5YH3ox+6HAr9PtKdde3RPplmJSYxc+MyB8yI6g7OzjlrsCt5ZlPr60u8Mx6OMalTWLz49ravV1Lzm6feUUdVeN0236bvdvl0+4LlgpVeTopS4nNaZFYYvKlmnVZ+Yffv2mY4tl+Ov08vhNvZt/HGyN6X0sWzPjjrBizVjHMsfkfNmIuDj7niuOHO5ifqG7cqLYzpyRKgZ+BnrqCfWnOsSOTdre+PF7oY/y8QoT/UFK7wfp9tmyXufFkD73r1+4uvN+urBmhVmXrFNNJY016lNvvoyJnPbd1atEJ/VjSlBrZ7v3C/ue8B6ptyln9V5nlcZxvTLn5r/b4DRYztbpxeak0eEdI7fM3DtgenHj+4d1DuKJbRa75O/mSPcXkf+0elbKCDOFBM/VQVYvg0V3z72iXCoVKOberjFKx3tzYOHeDPWHG4vygjvyy1Y8jRluvqNkge9WjW8/Xx6SN/DqtiwoWzFO1c5q59Irwg73DuksbnU7cVVCPy/wch+jB9YhInWZ9y4WngrXVgzwbTwsN0Qhbqp5cvZDpaaJ2q0ZX71SLgx4tqvXxU4frLMum6U/skhTP6Vm/GJB+jalIW8Oaca/POc18UC4sdSYT53N09sfmkj5vz0iZVnz/FS9+8D94bqhWQNdvh4zd7mmtKKH1rCKA/K7bJ7lTlk5eE3YCrn64EtFb0T9jnk6LZvc1Th3caqhyzhBZEvE/bs3DSYrvVezWvbp5KHRe0qKo9IGbKsdYaDs+LVg4oSj2gPal8RMLR+dunSaRFlT9WOtmP1JF/RT5hpp19/7aHdlYvJBW90HTbNnr9cJrxesGRDovdDUdevZ8+P0LYp3LZr4va5xX2sf5+fO1d+/ztzj+v3oFZWamxm9dmp2Haz3LmWGtP/E4pKwLmnfy0eWiMi461oKqxkbReV0HTe5/6meH1fPcFJ6kPPuw0Ibnec/1tUMXV4ltjJA+rLH24c6H+W32Y6QqK7tK+PV9WuXlEsby0q/Ck9dd75rxb0stevSxvOfLFkeqao3WUM/zlZ8hbylSWdH8YYAk5YvYu7BVc5zjrx0sz7/Kk9sd1nuu5lKEjZl5a6emQ/8EjqeCSIeFazydbNQPdtJerHyxZGPRdbWrVUsyH21W/qAwiYh+9cfM0saPRZoXz93wP/L1rARye8kVubsy5sdt6RBc+2dK9fute9/+uS1xQvp6DKB36YdgZULuqcluN2NMl4vO/69jHWFVLRIUL/xo8+kpKvnOfU5XfWqZKeI3d3Lbj5DwgRp94XLrl0tebbUf9P47scdxSfMsNt3LHiAzqPCJQn7c3LEEyp0RIwPnsk9YdxV4bqHwPuY4RHLa5eX95ntVS7lMevuFYc17/xmbPe9PrzqopusZP7NkqgPYQdcPDM+Xz+drqs9ckVsbp37RU/ni1OcDIoqKmLUYq2zXbT263Zb8y5w7GYx98/nq5+dHm/pqBiu6ei98L6g0it569Di/fpSNtVOAxMLp+7rbLtF/3XVOeseKlcvbI8dbLjDoF5LtFJVL1JmZy85RYMKeVGfnZFNHbmtgwxdbHb0UdroEZ4x/MaNPjVlptuuWPSYofxi/7CpTYmD7jtrvfN5/amv+bvmw7WTx2jMc124vNyt/UHLgP66UfmGB73Wrc+L6D0oeeJ0XTctl+w7bQ9KBtd4xVzNTFk25F1VRMBpTYWsvt1Ev2RZBNW/GetkL1fYtsx3duXtK0XtjyKjLgo8GtWM5QvXFa/cIbG45evdqc8kFT+8D3HQum9ws1nNPjlr2gjtaNMRZw4FKtf22T2xIKDxpoz4iS3tHiov5QuLFTq16M1v3/N9s8uHjQNKAhp0D9S5Gx8sWHJr8HJRaT+NjJbzSj9mj/q6RKmrleUJobUBcUHHGzxTHN6P9Gm2azJJUfNRWv/T/806u2vHHy1qMGm4KHmtvKggNe9JZ/8Dhya+2bzDd/L7199b3s/qcmDAg8xlAxS2dg9Meuu/+KVuhKOUkvsWN2Gbh3G1G4YOVPvwdv+xrcs1Z1w6LKSxo3WTZq3JtoehpUFSQ50XaNxd8VgiJ6Gpe2rNqgeCIUMPDXxi5Boh2S7YNcXA3rxsyPXUWP8+3b36OF4pVuq/2KvbvrW6FYt6PVhhpi9zXneyIPNH0BjtL/GrZocWn8qL+5YS/jKrR9WlzMSIaaefi4cp2ry36Gr0svJY95Pvjx4eZSej7ObqvdB8e58N07UqJEJNy3fm7Lx2+Ltj0sFjH2J2vskb8igub4T829NXm/0e6Xh21htmMjBhUeToZyIO8QvSGwZErM7+tiNpefvYJuMakdDQxkMmj4b+D/4rHgAA4L+Fb4ln0odxQ22mFj2V6rWszfT37/9iv/p///7vISQQ5K57PL69+5sM3x22+vqrk8eZ7jNeczv29KCspKgMpfD+Hn12zE89HJ7QVTRikbL/h7ka04746P4c/mb7bM+jU6LjZrbWm753ly7f8uTmzcpOItV3Vqa3ODa6jknsdrE+4qFa+uP9n5bvPxU45fTjqqFqQitluomt6Rs/5XaK/EEzr/gfMSd92x80/tTZ+erCG4vhI9Jq/b+sGO06Vu1ovcjK4OAQSdNYw20pd8K1J45Stq29r+yaL6thOf+xglpVztYdlS8VJ5beufa0btwHm/Dj3VOvlih4SLyY+i5sYPTQuBsOu+cGv9Rfs03CUtYqcuX0g6Zu0YIH2SYyK0tHGDYfHp1Y3mAzf7vrDSE7UeMpCUdPzRorNrjHquyS/l5e1vuaR/xsyk2UuTl29LeMOYVHehqnt/X7mXdrQVV0tc+htjmDFDv1ufUgtvM3qSR3m5TfP0D5hxydVqkw1iy/e2N65rZVG4Ytz0kZd1k6/qLKlPLNr813PSpd0/Nc+0MRr8Bgvfyk2qeKrbf8xrqP7HX7oe6Hutj2eabiZtfnzB3RXOblLH2jbaLi6WyP7DMf+4Y+dPn+9lv2s3Od5IyDB4isa+0mnLsnaMVOweECg9HmB11Hz2uXGNs7a+5mEWOv9Zrf1n20vbEkdPVb5+Mtj6MnrDy/bUlbL4O6DdGi4pPlL/vHp275YWMslTuye+N1reJmv0HH1/rE36hdVZwnnvH42LZ5PWXvaz8Lvdo8VrB3YGNRvKff8qDMjeINgd65aleNBw8+GF2iIrtV5KmSWbG7qn5MeoZJkaiz0Y7tMyTk7V+PEo4dV6RQZRF0qDYu44f5G+P+gok/x1RdMFmZ2mWDRWRkcW1Qg/to//cLzTPTz3zrJnVR97C5bvGtcyI604ZYLNvjMHWIyZYSzQjPrzLna4IueyYNOzjHSDOjq+YrwzVWt44/9yxPOqVbUqCrH63/YIR2v6+WRxosD0u6ln5QrXk7bFbExu/V9QcHFuxZq7f3REnkj9E3Q2O6+k/YOs2sdMrxtZVNvb/eUX/4xnH9rY+22c1FaTWl+c97/ngySjPeOlZpq43lyO+uRe19s1f5VMod6aa8dn/MsTdu98W2zZVfGSCpcb489E5f0crc0lWZx4NmWa9MtO/fSUE6Icuwp3znYr/n+168lKgu2XayZNsDFzMXOavHtlf63mzovFbcu+rn7eaAhet6z9s1YeGzNKV8wRndi4enbZ3nnXf/YnermpU+ewOTNQNPmOr3f21s3aOuyfTBq0O765OdKhvzr2RsvXKiz8s8kYWr1qYcmZ5hFRM2xEHFoeXx5ZMbAvdvuzl06I7DQzK9Sz+ZvDhWWnupY3t1oKy21ae+Rc/OdHu/P0numubHS9Nfj00amGRm7lYx+NHnz4stxzd/D7KybG69rujQHP2svEfrwPqlryZbrZFNG6Ph+sle4rHfrtj0lX0u/Dw7f4ee0t3C193WRSjIzxmWONEpszSnbr2rV/D+j5Ff8o9ukV6bPO5Zx/vEoWs69WoxuXrK8ojUARfhtnl93OrkU7q1eBz7rFE/sPpY7fBF5gMdapxSMlVOC6+cLpfi97lLQ/3tNNcPhT3ytSJLFcXDnfKSJeRuaL67JFu6ZcgHKTOfwO6GW8RSbvcO8rDrafplVV/xgGa9G2nllsrKqeduRo9Oa1AYFTmwSKuuqNa+efSIM/XB8YWLnPu0dGyp3mhRdnNHTfOvV+Mm77e3xvbrGHzkccPukR+ch2ZYuaS9Xepx78e0R1LvbLdLGySH1NxZM3jHxq5XNtW8DC97oPBTa1ONRM8Bt1zaJqsHb/CqrmpIHD0xvPeosa/a9pt8Vp/dTfznhrEr7QRCWcZCFv31hdXCxC+fz/k4xOrJw8AUS+3u6b3CJcW66qQNc71Xm3ZjeoJd18Hz1GS82xNlltScHFMQWZQ1yyPIq6STQ+shh3PSFrqzXNpnCv+sjrrpETg0YtDApRqLHk7VmL46dFwXWafgY0JWTkpFEttn3BylJT8+4EXZpD5Ozj63v5yp62V2qfXz7rlSNr3KO/8oOSqseW1ijLLPm8NVMV+it7g2zbwoP+DUNE+h41sa+8vPeTU5O7T9ZPdjUqXSNVtnPh4Y5vLZXGKaUcyqK9NWndHq3nNu//pVop1aY7q1qc+dXmo302PAVIvvKq3188tnPOh6QlJysNkpc/XItbvOJsbkTp265MCUYb3GSDe7Bc11uSn8fX3Fweq049u9KvpNTzWL+dHv4OR884k7VCxLNqqt27U73OrNw/E/L0a5v3y28YvchGX3rvlaLFJ/u/X8hvxPCscih80rSJt+2e/iOVH5/OKKgXYFB+e8zFBxMH8uXni1Mi7GNe/iSKN9Y5UtvQylX98fkJtwfHjNeCHTdb0WL6icu8+zaL19xcCYnmKm8/LEp1odW9VwKeSBUGXf/E2Pmpx6hD4+K/X8o9rotCUBVXprN8qrPP7s2jxP3HJZoknGSS3tpLVDdl8//27jtuUCt/P5njlHl9fqjZM1nrPfpo+ckMojZVNLQYBb8ZuJKgfvT7BVuZrV/fr44FV9jy3SO/RuQ1TPaU7vgmykFiuErlVf0HPk5KzM40XWivMM9gV+fVjyWObsstZmq7dPVfNGbos8si2/rbP/sFkF9XoXNa/J/wixPW30WWn9LZPh1Utl1STPrFmrcudW6tjNxSFD2jcZiLUPEj12advmHIXFt9Zc8ax+Knr34PqnU+buium+a3usxo+RLXr72od8NfzY2X7/glKxHvNm92z6Ijlne0ir84UG9WWn+6oXi8S7bCrbcsfo2OhR8eqKRsNTdBfPHKu16bvHp6j0hy8MZyt//iAzxnVObsQ15XOVSo6xQ0+uGPl8bmxBqU7oAbsEuR8fLijHLFqt+OStfnrVrY/7Lg2Pjn054vTdiurnqbe2islrxPs0V000WXuuKnxOZe0K7efqaXKbHRMyqjekqZyVPF+40FAz9tUIj4seKg0OVhZ3l7U/eHUhvP3V3r6+V6apK2V0Lin6FDFnn7WvhFV6k4tfy6ax49b+eq3Kro1br35p8ZY1CrdThqZPjViobbDw7p4fJm1xsT1jHJeM6NnDu9j3zvXjWy8IdGc/ezAqef0EZdfwW0l2Aw+M1Z9+qnhWRMJnmwaJvdFeihdPXls4STuhpv6ZvJfWuuT8Zh8nNd/ok3kzal7kmDaWy9xt1nGx3KPbbdboZbsLZfuWvpLymGC1YNJHUeHxUfNTV+SddtoqlOR270UPU9NRdbvOxSbO146uy88N6LS6i/S5k3M7rD7IdVeqW9bfPGfWsBVLJjroOJ2LHZa79+XxQ7IbQ/oNdlZ4+lzu+13PuOhlM+STIlY6nv3mNPfE26uOC48m3q//8cxMP9WlIjt+9zfnTPvtvg1P3iSZlu4433575Lkuq0fteiImbbB/sNaB/KGTO2XIJ2fl/3y5K0nmddWW7WM2ml311IhqMakY2P3x5XFPVuStd1LfFBV0POHOyzqP2tsLQvdlhziMsVoqtGOhfL9HmRLLLtdGz+pwuKBw31O8Jd+8ujW1eFLcl5WVeqWdutxQnFIxtWy78qKrO7fmJjhVNT7Ordx/7XPUnn6pO94vNI116dHeNHdjZF651Mf4VbpDvzklLvULkl3a48aBgyd7nhEPSG+/mjlu1jXF+ZVHFt45JyhKuj4181Bah+rDPauPDL/et73r8pSYcUNSV5wpm9b9mVIXjX2ZYRntTwMPSB6enffh7tWAZMWn9ucUhP225dT4L5jncGKN2R2DO4W7h341PHmqs+Fc+2RNyVP7CipFnKtF3xaqSF/2ndihlqk2sOJ98vNtOvJqWU99zXbuSKlc8aDufcV7/QuGt+bbdp0+KWhnnPiLEf0+/ezc27XWIKK+u+b9acMi/U0trp+PXn1hbbHZ5+CKOOuQnSPPFwrO68f0MVsmY3v2yc4x+2bufW6fNvBLgpjIqvU/w/oPmOx+98flQetkTc9WtIaN0dQ54b4wYUTD3PcuRxfNEO1afG6J+CjnTVnGG3zt5nydr3+1t4vh4JaI6VvyZdJerrT+H/iqDwD/xqTUzOdLLz8dvu25tO2Yk2Ilv/f/4r/6/7b/VxUIBLECgeD29g2jZh+Jtvr4/tvncQo79FQPKLwcoJ9r2M0zLn1C265hj3dptTS7C++JcOu90eFt+LfNk0f12dhJ0aqofsi4qvM9b7VFRgzwz0rooyoaUFgnrli2KHDicpOIRN9sx8FHVEZZGg/9eulOTecTOfNMPlupuzq/MhGe7JWv+8pi150kTS1/9UtiFWPHLGkdaf9U+J1PfFy3SYGJo/tusJItux4lu2bXEb/bLwabPzo8aqqo6ET7pXsUbDy+m7rEXHuz+tHXMTXf461k00KXPx+uP7D+lXjKKH3T9tm3VmSuvnGiWPX4iuI7dxcPmn/mS8vY6WrRbXdzdEZfd75yzVJP99BKUe13uy/2nzDTfprGgS9j9D5E+u6xnldxI80uZJdGw5wd5weNDd//1nCRxpZps75tL9ifEBxu2vOy7TarSmHhzrsnjl52Urd5T2S4nn3c44Ljmx4et/1Zdn5L4LmBR+Pn9VBtmnhdUiAQNJ242O+rtqbeszPtO05fnf1UULH9xJ0AhdiNU92nJ6o4DK1ssAk7O/blvULVUind8vghvr1fiw1MeVzUTev6EOcswb0ataooPdubl5TnK3fM37T72ip5S8VVk0YckPH8IrFx2Zi9T3qvPjvbu3DWnuzszebHk85EB78oNEpynjo5MGnoAJ0ROfdrOuZpir/0nzr/QFM/oy99et6oEJLt5Vr70eJ+kMz3kXuvn05+3KT4pri5+XnQl5HaRp+Hhm5uzp5vu2H1jbu2+/vlnVonv2T5y/lWYQsO+dx6FZld2dJ+dJ20fJxIVsO5dSGbtJQ9joqJLZvsFCAbutWncrft3IUXa90kBqTK6g26faj1Ylml6h355YPWaDg3PpqZ9tW447v5NBu9+m2n0zeuqi7+uHx0N9H+W+bdy7s/ov667fPnPU/47wubEyJzvn9mqcAqcNXd/Ek5De27GrdXnHIzW6rdstNuQkyYTfOoa2bKUwcUbJDc1H3u7aDrBbtXKXm2Hss1f/ZONmVJxITskEkZY9ZtaOjidHTX0C/2AtNBr9yHnW3Vk7fK9h406+DJC4a9Rxxp2dLvxxf19TtD53YOkXPYItxzetOaKZOcZ/vPy0x1rvVPVpPU71L0piXua4HVi+mTlps6n9l5W+ltfNeZl5OGPjBO7eV+vV+n8d0z3rTKFfSVfHL4Yu3zVQOG6pWH5Y2ten1uWJen2x48nqY8tMNA79W3OPsjoZMXlldV95xZfHznnDFlNukiPWe5FWYNyfEtmjnHx9yr9ww7af+MNzopV4KLKn+uk3etFwgJBE09QseGHb+VekfIaXC60b2yo987DkrszNJ/tvTRqPQnlrorKhcmepbqBBjUG+d9Xm66VkRKP1VH9cnj7jk/v4Y9iRGKHfNaJrjjYUNfhYYXQ8qaJ1gu/qYomdV7tWRMtU6kde+1ByUkphooXrLNrb/7zfub/LNOmeUZs8u7VO7p9mNfQuc+RtIe3bwPqb6Y0+Opkbl8eaVyeIzf65HKZnt6yUv4ZFmn56w45NxWui566rY7vYP7q+tv2nl3yax027KRo2f6ZdvNOSL8aLGSlcv8+W8n9djRae/dVeHtHobeZSOudDMNKNqUYBGcXn3J6PG0orrPFyb0U8uIdO9mHmh39uqAvBfCWxXiaodvH7r9i8OVgwLHH8PfJvbaJfNg61Cvn4azPEuM77x98Gyd3yXLNfN3lvre6X7ysa2MzfPt5wvMuj5w9C4I+xT5+ojWDZX7e/K3PPcfmqK3aZtRtxNWbko7hH1OzSiJ/zI9wPjWE6sE29sR9wfn1Y6Rvd8Y+KlQoaHh8pH/4bdrAAAA4D9FcdO39hMfm/vtnTJTXXpr8dbf+3+JX/3/uP830O7S1kn0gpbawT0LXjUa/1D+8m2YWlnBhM+qo2fV20wI91XsOdLuo2Vtfv+y93eupC6zMLN3OZyfLtDXVYwsHVChb5Cq3NHHMm1G/rBFQT1N+6kOdC57ENz1tOfA44nyxx3Nxd56jwy42Hm89ePkfYkvxmqMTkx3GbZqRp3mhd0qewKGqRt7JEyvTg144fZk97FBy25d2h02zuKW8gzfZUuWVH3LnzP6WJCyfHBVS99tPlM+dKm6c2Lx9sO5qp7+h+vHJ3U6bjV9f9VjwfPoJdJDrrwK2dZzUHvM1i4+7+6FZfU0sE4QW9Fv6v70RFGluw+7+RS3atau3Sd1QqrLd714b7H3FXcNVhhJ5dSOr2i/2jeq7P7lGfdP55YeXzR4uqmH3qrlRlnBwguPey8+uqZB8r2gwHTOoPHdKu73WXArbf3Pqvkza0fOEOwMuSE19ntijJe8hd9Vx3XnDsnLbW+6pq46dd2eF1PaQpdME+Srz5XebdvJaO/hkLsHB5zVCBaWO/5z643oNidnx9yVwWOn7Rl53+lE3jSNna7Lxow493CG+J7LVZeWPtWULt3hU/Rt0uKEvvIb54wdnhdQ+6qpss1976yIPsKRvscuu1/dslrI9qKttWVp35GRWZfGO7RU2M8yFZz7kLtl0J4N5toxAUpncy3GHKrL3xWsFZxkE6K4dapk/pnHp1dvuPhco+TB3O1KLbU7Vz/51mjQ48r5ryrfvh5XXNhz0tR8Le2z0arl/c/OOzbcp9/J3aMFS3ULjS0N5K0cb8mknrqm8fVO7tpL8YKs/obtsepbog7XWAzMsrfznDws0yisoTQr1Gnbj5UpndYm3mjNXGpyt17M9Xz/V+ttNaaO2zzGd/lJe2t9E634glXjv68f2LFYucvNzOIBYruk0/wlVrW/Khp3YZXqaLX3Tlpfaw5HjxQNml1be8J6xeLh/d7M+v/YuxNoLP+97/unqYQyVppJRYMiRAMNiiYkczMqKimSSCSUqcGQKKSSlOYkUcpQiaIJzaXIlFRSaPKsa1+173397/2/933t67mf/TzX836tda7f+Tt+p8/xO4bzOI7vWtY69V+fFBIIBDIb9080rxL3dJrRu077yfS9aS9Xdc2RnvJIo9Rq3PEuK3LSgvy7ipYO77pJPf2J5809HxbNtTy4VXHml4JdFr2KXLbobwl7JR8WZ2lwOj3MZ6Gpz6VZ4pV9qj21+wm8xY4Zv1p9uHjApPkZQ8/u6K9yTdl3hO7XbTXbuqQW9GyyCvr6oiCiWPd26QEny2bNVTskjxRkXX374Z6Qo4iObVOx0K49WoMN43LPy66z+P0dFCm5kzapJWDV7k7ZA/Tbzwwf02BtNG9jt+8Tey5XWifhe9fug98i8y+3l2+QfyMctPmTYenzZR3vN9yq3dOvj+HgYDWFIS1nC2tijy87pfzD0njAG93zbW+jjJdNG187NFFTp2Chmo9v3g1Hh6jtc8OXPYjIup/x3Um/fm3Be9ee50ep7g69EPtlTJ6fivlRpz7DDQJs/U1W6D9639M9J2ho95zhfofXTekWH9/34tksc8OfRQUiny/YO+3T85E3mrVfarnsu91j3t+7Fhlz/a7tqz5aNr4XAqIWZy1PTpv4dr+KveT5ZUHRF/s9WFozcFdIdU6yoVaQdcazWJ+bIjfm2GzrUTrh/D5fvbiJI99cOLLm4uoQ3bJlQe5Z+QkLPawaqtVU7jbZpfZVDEoQfdissfPalK1RX8LPjs8RuAQOyjZMvNhSdddve03d9lFZY0Z3X9c6rq7HkxDnx3OGvll/s6m37/nS7fLCTgmvO3Q/t+7s3u+J5snMubEjB4wr39bPxF173INh+rLSixUazMxWu1/Rfa0+TUvT+rHCDXtZJZstF4tbfihfDojufv3b2t6q8w99b43r93LymEMyyxZk5NofmPOvu1IDAAAA/3WdHR52C/9ROvHbQm+THOVuE3/X/+K/x3/V/zcFAsGxqYrf4xwjpW2yFgXnzplk0HfSrs02Qxq2nL0Xc6/67PFP9qUevu1qOjrObu+1fyjLzWwzGz5r4Q7pRLuECUuWdldsKNuUGPY9cPJCU+dS39AD2m4bo45lf+1icjq6qs74++iLZzdv2DlG+IrrT3Wt6T1+7LDdNfyjhf/V+IE79FdO1XT8UC61O7fnmOSfzt0vKk0q7ViSVzpAKjGkevk2Pc/v9j53bs2N8ktQEDu7VGn6Ib1pUjUmfuGpeVKixYlndcJ9coeL7HB/EyjUqPYksv5Z256Fp3QTOg3Ttrm2Ita1eP/1pU2HnHWdByztmJcSMmf9tYA8qQmNkyW2R120uXO54OK5oD5dpa6km/vprl6yrLK5i+/YVsdQmwtyW4MDV26ucRBXut/FdqR9SsL7rz+eTj5sUdfbT/1q8f6ipoHTVeTP/XToNHCpS2xd3I2HWXXHZ0yIm1+rkbI3eYZDdmOQi+aOOY8XT5yZ6VOZceVk6+LThq5VkUdvq4w0U/W0sbcQ2hIg3qR7WUaz8ezBq2JrBg3t/HB9aJn2QA2JSkuD2U1XRNJm+01JPF38pO/yEz+qFlTXK1rIJGQN7yy36cix1eOSAmQVolzWOE7e/U1xzGSfdov18+1bzvWZvFvnw/BJ5d4KY55o5Jw1GmI5dXh3cXGPTs4zEpZt+3nNbkxt9+TRBzR+VNRoXDuXMa5KIc44I+F26cIFZSvGz5sRkF+msaWzRfadZM8xy16unrat7ptlvoHo8mg1lfnTL4Ydei2tUzShq8Al4JPoqdiT3lfmi23x3jtB3zetMbk5YX74m62LN6vWJ/QRVxcIhP5yehVvMa9cdzF62APjsVaVjcU/Bt16/uWlqGFk5ulRW4ztVYRWKn8sKzDf8WrpoTDh5iFNcw8Y+nqYz6iQTM5/6q68aUlH/wKJN8ff9Rt84GJR/LxjAXZHztsvzeg88Lxn20FF/6Wlidb9AyVU7iquHHZzjcnNuRaTG6QP1bj1zo5NaDTvnLdzmd0EpQlzq4dKZRwRezR3uXb3PtLZtT3SRhtFh1YM2dZ6aPeR818e5DfJi2aqnNzWJz7z5/jQp3ktL47tTJRbOVQivbZ3wMSBR/o7fLw0W8/U3i/93fs3eTd6PdVYZTb5dWnNoYN+Elekjl1t0K1YqBertaxa88bhVyKpcWKR/rtHRbYGT3d2d+t6RX1u5rfJSirt+ftGPFOXuuMUP/2OxKlp+W0PtHLm7rSfrF1hqRf0aUjwm+jLBu1Tj4xdP0kxQMbkmvfFsR/nv57rJTlr++begllKdQ5WFdsCbiq1GxwvmLr3kZ7bSeP19iYZgWuNL+o29Ozh7TFoSb6u2YTWvZsGFfnMvTDMeL2EvNDnndlDZPVlpu9c4J7URTrEN67q1L0eXq3ugglL/eTVTGYkba+9NSApue6ZUR8Jr0qVkaKLJp2YumnIvKPLzw+TWbVSodd9GbuKBPPHjtcu5muGvJ+5vP7j/rTRmUllPUZVdLonE7lO8vWTE8N7vQ70d/i+dNtytx9jph5OrenideyWpazthQ/OlqEta7SKRq4Z2fT9ZNnZ+9kWQxe9H7a/yPHGgKJFarcmnD1b4u12fMeZ727Px031P2jzXF23s6dudlblqntnc1Xca+Rcqi+ZtM5dVPK2RLh6yVS7tO8XHy/2LGi/vH6Dcv/ywJbCJ+eSDw3ePePLaGdR7VDxHuZ3PAumWK1oH3pBkHve62labsyC0PpNqZ1T2yd2z1g8SXXSWGeZfr2+xqQsbxh1f8pe6V7f72VLfliqNd4xwnbr8lTbIyOe7aiq/DowUXpCeLfw8GSjD6MvaT/1UguYoetoU6J5OcDqs7vhWZepg1Udex8eVz1OSFrcXnlPyaaNx0zHxj89+lDVuFZSIrMgZHvxse/J69+vXd1NENVmmC3ebnXT5PKd8oLa3isLTX7+tCmauubws1qL/a+rx/eSjg7P7Tu7dWOM7S7DEN17l9LcF7mvu9Do4yaa/Pr1Av+QieV9D3tsH9IlY+u7ThV3tZPbFjxIENNq26ffx8QqsKH2ztTt/VXVZq5eftu5X79x7p6l2g83drnVXaLLjoRuJR6X5lkt6XVhuq/ckPzzUnFfL1Toefi8sH43Tvl6707d5Q+8jo1/U3M92/tdjNSnVdL2HwwyzOVGFZjVWaSE2J7Pfui9aXLow5OB1jfsj7rKTP0WaHl1j87Bt8eKg06szn01/d7UySl+ih1eU1Q0loisN1T2mjnndFqGuU3Apfodd93Vsx79S296AAAA/z/WHpTkUHpIof5smpjcxgqhS7/r/y6/xn/X/8cFAsGiz1VTv1SeWly9THtMipNUsfktveJMk9TxvVpkPj+ZldUj4k3RntAhae/lZqsHNZ43VKgNdq591HF8xEXf6EzR1JzjRqmPvwd8UOnuUDU75tn1DSOTNCRHXl42b8wEv1Kfoi9VfbuH5ZjdqljUKfFRx/yrgf6l66dMCcw2j7f0faB/eU75N91Zbuaq8hufT4huj66MEjn/6KbsJ8OBqa+1IpovPdnTM/DqiPHfHC/uilHKvGdw7LlC+MNj5621ct6/fGWtsiLnmIT2fPUBNwrWPJI6LhvZ2NNDuDVG+HZ+X7lpwY17ylQHyXm1rxYynTC9ICRvTPP2vs3vu/1c6ODer9uiY3W56XLrpaQHh2eIXXO/LyxRrlXgf6HaXGOnReh8y7ahZ5pqA4pffoufNkOp4VikSMbcdYpemS2j24asVvjmePzeg/6zRX82lBibfl0kFuGSU7H8eqePVXY/P4/QTJn7QmiNqltQ5LaV8p3CSsXTW5auX7+22nVNdHLpvgkJzimxKeZLxWpGdrXNTlAb3FK5dVfDkpST37N3nNlZGBx716wmdpPH29yj1ZYGnV4EHiys80qZZxuZtmKbU/EDa02fQ06WNjXWF2+bleX11PVY2RTaoOOwbbHcSLva93bXXF1OLWmZ6V12fXDJx23Jz9ZlnEnbH3lUcEXuiUo/x5RjW61XnNgx3WHXCfMYfYuzX7Zq7g24Fffl3MkUQxlpbc+3HQlLJKSvio6pHCa2ebjhvDHvZzX10BfvKW34zbthpdprm3VKr+aflu53P1RUIBDMPJd99bPChUsiYzvtPKsmHyXzI6x7TqSi4HnHxK73bZ7O/hwtf1bV9LuIvJfo1Flhhk0Vc8I9L2YEHI+8qVeroqxQOt91bXSV5BrlkJLeZ6cfFWxY5d8+vCi3QzGiU3vsLKXcxAF7y94G9HLrL6daod39eaGow5zXPo4ye2rq3fIzDl973GvW2fXOabbzDTUTtisdeFZm2Kf3qRTzbpEeJRMGfpp462uCzqTEPa+Pr/1pKeO5Pl/OfVG1fcobwbSP823GdolzHLbTv9FAfsGsXu+djcyeJWcWnWhevmeYjoTN6ZvJPr6TG54Wiezd/6yg7FB+6OLdnUeolnjcK81Xu6O2xXaVjHzHS6sPfqKhWlI9H0yrntv/iZhIcS91Ybm5Q+7PnLbCrKi69oLXsxyRzJb6cz/tBuoVnJtkZTbrbo2Bj2TylwdBGovN1h598FxW6MuBY2Yr3sZ/jb0x957PJuETa95N79hXVmj0NE7GuWncLAnPa/Yqi4KsRnt6B61bq+LQLHYpSrPm6CHjXjnGLgm2Jhetd7ubdH1l8vDOkzUD5hZtOyEbNP+d3lu3Hm9V/b/aSX558F1FSDNf9MTZOUsldXKfX92r2nZh6za9INNhr5XstP2HNfv1idij6BF9Lqn++PKk4dtmvI5s8Rlp0M/e5sY0s/t9D9Q+irp8c+fbITtsmrpNPXLRI+De1HEtXQ+mhvtN/TAkvE64062Dc3eb+31vFj+t+2TEF1Ov2MXKBndWBLhplV8dJrnIf9vnpDjThpVucVMXCLyuDnYa1/fYDL0Zr35UVXXUd58w1EB6uPipWes0l1ava7CS27vJ4+jgzsNyzmyaHRS5taj3hckdQlIqhvdat+059/qG8sqFS05V1CtaNe7rfm5tUebT4LCBYh9GNUp13TihOXnkhOHzwn2OFgUGP904PKG+Lrqvbvbb4DtWym1hwa8sve8kB22x1AxMj3xqkq9UfdzbYMikjhuGW8ePMnI1tT9qZJHZMmpj/YBnmpJZeXJxZ3V6WQ1ov1JxS0PD8FGLRkV91BvrAys+WZWKL1h/udfl6XMvfZ24oUdNk2PRApmY4V3VPtveFrnXoZ9luCW+r+O0BQbjzrzoezdw9A31/THic07YZ/W+9eLStGfrw8zExo/8F98OAAAA8N+c/3PbuFt762duGzYiMsl4ZMnv+l/i1/jf1v8DSpcZh1aVL11WKbuno9HINVd7n1Dg6KB3p4aNX1B5/8erxb5iey+PaNGoflzV60RNvLrG15lnu6SHfA45FLRz1Oskm1PmpvcKjW3iOsUZBV7ccyxAb5C/z+zOzZ3K3HzKU2Mnb+tveSe77Zx/8OMc85kahW8aRyl+ylYwPHWi5HizkUVVvc6Pwoq9zjfDv9w57z+3erz/w/BNlepRXad3T9f/IfnUfGig+rHZptOujZl0ML5o9Nhm6bCLvWdtdfWynDevT9Eokczs88pSR1dNlyyYc2XjuOC7/td9+79wtSi/mbRK4vIGs/Np+e+mdckcIvOmvjxx8SujvirrWg6PK5058VPYqQvFPwfF+Y1bbKEXUT5b/HuIZspOvcQZap2Ml7d8ls/OM1kW5HTXIaTZ3UtYVf7QfrHm9z+2WjUYDVcpf2i0om/2O7v5l++nzJrZz/32ycL3lzTuP2gdNnrbsPhOX9akVXtrOoWf0vhuKlg+M+JVQnr+3p391/1okDpU2Ba95cWdz8kFk02F1v2Ys/OqR8eFkhvZAfFbYyaaJ8sO3qZnkZQUkl5h2vOTm7HfLZ+JSd2l5+xqyAgoWR+Um+Y32MnJ6Mc4M22XipdLnJvuJL/46T1hTYzw3Aetl6rPmlouSY030vz4uHdvl/wXXxRWLpp+flibnMu0jOHJDe6O2d10n70wuaEdtaTQq5dis4r0yKcOXbYVNR2ut/h4d1Sz91PzUd7PY2J2DamuUara5by+/ljMCptG5eSoO5PGBA4aG2BdPE3h7aMLE6UlUw6r/XzQefixquWLvFfFl9xNPT4rwrlls4NdxbJlmevUh1nuPfawImyHWmZbTg+5xPCjaYudm4xii2Q7uypOz9n5w7dTilLzbE3T099zroxuzGxf0GwkusssTO+kj9fdlzH2L12mJm853ppQ431k7alx8fcmKs16nTe4zm/eMRHPw65vRlpWtW01KPHo+fpbx0whhXD598O6Zr4pzlI+3JK25n5SqON6h1v6NvPU3karRTuuOTL9h9HaLdGms++YuJ4oq9+0fbzwlpRb3zatrvXOijK+pfH6VGufomefpmZvj9n1wyc6QDdGTCr0afLhsFVL9uamFAbEb24tKp1qNkii7Kzn5GE1K9QlV4z+uLiLgnW/U3vbl5cf7p+mdsBFVMNK1KyvQ17j92dBPjfOVp/KGKGgPi92Z9ekDNM7LnGFHzzWiwxd4D3Dxr3t4Splnw05CbHqcuMKP6+uTsi9/TYnLVBeZ8/zwV5bDo+X331qYdDD6rdrF/SeL5ml+izlxwOLcqMiZ6d+heNW7zd10vd/Li4+r9shnyFqi/LmjcqZMPqGk1eW8qrg6ECJxvMa3nanipadeeqaozRFI6HIcGTHox+l0lZm4SaTvdJq+9iXmb1Y3BKw0SrSqSIve6vG63nRP8RnDB+5VF//S6jTnJjx7/bPHqZb4HvIaoh94I4X4+bZFrzzWVr2JcLYYeSOOfFDNE+Mi+7Zq8F/s/B3083HZtmpOK8eXJHl4/4hzEX4sVr1crcMqdzrNoJvvapbnc8KTP3vZdktXeWXGa30MTa9WDzY54RQw+R3qQNk375YfUAx0SvS+fqt1hMd9k73rGR6zr8dMSl49/kx9YkH5eY2BAQc+rik+NNXP1nV3PAfUQeb1RYJbTq+pqdpn9e2V839J1utVLoTm3nVcJ32aPNhBcELbre5Pn3wxmOPebpA88t9xzu7veeUzbWbp5pkt7R+hZZM9M41TY7qH0tFslYM62/rMyci7da6qdvCDtU8Fz7WOTH12lS71uKt1z8UjlTdfKmyvdx22Okx2yWrHeInzejqEfSi66EPs/ocjFuWGzFoxvFJyVJCcY+3jR4/9cW6I9qmipGHzhpkOrn7fg52Dfl8qSK6uqeKzsTlO+Miy3Zkm3pu2RzhONV3tPbdYvN/8e0AAAAA/81J1U2d5znxp+HG7s3P1w9Omv27/pf8Nf67/pcWEggubF5+b1lN5NvjmYnLIhpUCp3r7D95Hu6T5/xW3OhZ52e3Y1b5h6htjnX6MHBvfbRS4YJuIf57Q7Semu08WrAnbdKBsZt1Rr/qE7Rtd/VOrbLhNmapkZ23ltQf7VF8Q3R/eWcfsxEDTDpUUlSP/DwWsffxvlrFhbejzvmVzVteIWbnVLJ2QHpa/OSRrWl3VzcqSStrrNr3fGac8mDTsrzWlNnCVVKuPSUVt57Z8uTZoNjWL545H3JOSOXkiVh7TOvTP+nr6cDojrF6P+bcEXuza9C1loGrdS5Lb98xVPzswqIDtwtOPmw6OM6rsfzTtEmVswfMe+GxYNwzJ9fP882WyLz/oLDnmkvv+3tlSt6uMuvzbmDWm7v5BcE2R864uh0eMtSrQ6lcQr89sH+nSPnxw5ck5n14MWKglINd+vyVnk9OlGzRUt4a03xwd8TB/pv77QlzDj/Qefk8pe3iZaknRctmnbc2t5JedTBfRERf43RVwc+dCxosZOP3tYbmdptQXdzjTZz/fZVdTr27eAqeDIzp7bv54/j02b6LT8kL5T9UVnpjIn78q+qTw40aNcYHfK4LzBrf3lM4eqhvRqymx/6oUbKjjzW5+1VaR3w02LpWvotMw+zZi8T6HZRfl7U1wPyV1+DUbmfCu0w6cShNxmqJxOTjpXL6YzMUq17H5wXuTHzUy2vmqWnzzDNq68UyElpn9X7p3q33x35BjYUDRHuUXTX/OCiuVvx0zzH9diSlr9qVGC39pDT5ul1xyIQSgUu00qLjB4M1P/QXdVu3vK1il+HMYf0GpCp+WNF8XKIm9/k1nfERr5PuGQY4T8ivj/h4KEZmxcDEptJB8tfHjpgxZ97US7Irh0lPv5R1Mtx2tiB/Rad0yyrLJV62uTl65xVOxweOXrguyLohTLs4q0d8+LxxhRvuO6que91VTqU6sL+b3r4Ky/73zC3PeKUrld2+cWPMwv53ZulpxxtcrCkS69zlwYsVRmkHtAMjT8zU3ivq3iXfX2+f8NxdFkd2Kfx0CLERVuk6r/S638Z+m9SWj//+Mqr09IryyyaSJl2shjpFjr5v2KFuanZ3/8c13m9t3yt/1k8+uy1NMPiR+MvTYTvdxvRQerfqeJv43YOlxXPUntxf9cq+JiBdRXucdbWgTmHpia5eSftNegUdWty2K2hN8wiP6oUaE0wy8wYPv+a01O57sNCnmJW1Mj3GKc8ITTxlUvJ164ONEdp1oj1Wf7g+pO8ur0q76UdeLvcpOT7AJdz1UVXHgq9ZK6Ru5XbPNOrzaFWH1spJG5vvmyVrKaXFFYRdiv3oqLjaNuGTwH1hn9mx5SYTV7fFlqcIJ44wttaea925Njria+gr2bCjkw2Cu4mFOjv+uNbPNGX3YrGg05rj3mUv3r+4Nc43TC5i+P2MOTLjF5pVy+xZsFbWJcTCum77mKipmaIvOvWWyPLv/67WxHz8pW83Ptze2hobdOtClUzSouOV1wLMYtJvVChZPh3lHxk1+Ii8w88+grDnedE9dmd+ez5T6+bKiKvekZ8vbh0T2FB2InNxok5Nfn1Ek3yu+p3YsX1EvOvlttltuTZXceXQV9ovrWrLCkU3X+jTY92TdT33vVN/89XzbpKxoZHYs1V7tLeWPvvLP5e4pNx4OnjLEf3vUs7XxbVcN1a86OKZEuiZkls26rxtbPKwVKdOep6JJ4MdGmUeBq/1Xpfm2LPpwivNwB3KxRvntN7ZdWGXRuzGZwrRto+uZMha73uzx2x549svr2dYCsL7br15Jj3iyPhFGY6+vV5PVvBoOnC27m2L+YKB9hah/S7VOkR+qtv51m/B8XOHZ+xOrZfotUjYpPfL2ubDmq1DRSadWT/CqCrcRt9/u/CAfTqtif7uJeUmu1s+jl4boyg5d9Ta52vfPJXZ3EN2wpubpxdtl1H+XBqZ+iAmtWPg2qjRH5sT7TfOWeayXzdrRvqVPp4B87V89+S9rHvov/vKg54emxYkJTXMPbTEqublSBmdrYOTXJNebJ84tbzhsZXvmpXti0eIyiop9fymPvbAte3PFd1/LPf3vnbljb6zUfmZ17E19soK42ctEj586On368FWq61UN7YoJAzQqH2SsExJokeJ8fyW29On17T0q4wbrrQh/6RIYajLGd1lRnPOy7w4dcd57AXdrl0mjlvqv3LpqvlnrdUeBDumRddfEL985LqRr0PZlGTn5tevh7sJd1HqmrShrsBD9H3txI5R4rWyQdpPnoev/6h8Xmnono4VGX5D9vSpNZg/M/Z5Q9Qhhf5lX1WCLVcmHz1lcWjHqNjZZg/TbsQOOlAbNf1xdejC0rORdyrre2fKzrqs7Xc/1Wtmrfn9ge2lvb4PelWo6bZ18/cDB/e82/Zur1+WdGVnbdUjhffSlFvOmH/puDjmvPuUugXOV89F9fhSOLHru2WJRUV2H6zP7XaSMYt4uzvQdcPCgz9uCqdnnPn2zbL7m7UPTqmbNS+2Cu13vFN8d+thKz0WpNvHv5yT0smpyv9SWsLwZQEud4aPN7Zu61jRrLsscdBTGa8tL38odHQtP7A98m3o+QsTMvdedVd0E7l33Wv7+FNBZe/vijXFbPdRNNO/rur9Y0Xzt5TLXfU8vK+GtczpIr/D4GuPy0EaT/37nMxc9GqqmPvdHuqNqmazFY9ky1dUL7c7vn1MVd/Nm+8NcB2vlu7/Tnv1pdQw14P6ht8yVU4XbnDY+VEu/eCLIan9f1YI1+pMG6HpeUE9apD3aqU+VfW9XBPlRi+9bqFeUDR2sfFBacn7bUFZaz7kHVeZZeOh22hXmG3gNFti//55fllbNkREbnLPtVnaeefko94DetV183j96VBs2KkzWjl1ri8Pix+tuR+SlWw6QtpmcG7cyhFFFkfipfp0GSVycnfJq0zzVeUvmpK1Jh4vHGasFbNxy8j1J/UNvgWduV68VGLrIBcbrdK1NSHVXoeHNbq+iJ65Z9bQhy1XwsaemzYjQ27Rpay6wGBf/zkDH436uUlIaEGXHwHLT3XaOznK1ygwvEu+/Cv3Lh8zqwostCZPTdN7HCt/bquV8rPT+v/ixyUAAP5beJ+/o8xyVH230P0+DqvWyd76Xf9L/Rr/Xf8XCASCJz/1ZsuecBmgkyQ0cMWh6UkTQ90ed32Q1TZg4MM5X08VTnxwvLd2j6+a551d1wYeSNRJ2tXFfof9Rb2p52dErClwb/wSamV9Kso3cU99N32F0Tvk7A3yF9YODN7oMFdmtpTPmCE3LD9vbpD51jHTwfZSxfpMM+2zQ/ykW3aWrnE3tBGW69jhcVu7wH5LWdLIzKj9I+1nyc5dI+IguvyjU7T4Ls12Q88zu22HmYkKLnu57Er+djBFsjHnRdacLsdVHz/vOJbV3WJpavpgY09VtbjFWj+MN284Je9VqdVHwrhy+oiyg3sV/fwiZGO3LtTZeU7jQXbzhosvN35qrLiQfKlTnZlAp7zWIOqeVkDeXI8uaxsOjv+QKW0oXpYiEuqYrpEeOX5280n1tz0aT47tGzKkZ/i5K6MOrep5vejiuN3GeVND1xaPlBSNTbk4alPV5SiZu9kmA+dE1B2wmvflQtJ8R13l6u41nwryLddoFx9qHXZVz3n0q7Upw743fjv8vDJA3GzIbuuT+w7H++ptV7BYs/tYlKmP9bzYalO1/rUmVwaOLPG/JeJd+9HF5s0treTy+CDRMfl9XZw3tJ4/u2D3HZXH736eW+ef+s6o8XplzLK1y2+96tO6a8OShzIr773YY3/OTst4hV/6Kd99yyqnBYgOWixpOFJq7cT+27PktNe4LdLoIbyw0MNWLXhEvxr9Qe6LHy0Zfv/I+LctlbN2qj1+uf7M2spRpm/s+hl2eS0RMXHJqJLjqW0jTSdqfda5W/h5rn+8yVP1zO1jDhudH//1nuBg1Pkb054l6Ra4+96cGvluhe7P6SUfkxWy4m7pdD5QK/ZzvrpewdaTqxfmyn8IHvuh9aGOpEAQXKPZqUNwqtsA7U1nVooNuPs8ISFvyn7PfDvNW0lnIk5tSPGwDf9y6Yl2t5qjq6+YSg8ofBLW9nPujt07ughGnVtr/2nDK9PRd7tPCPvRPHSvk6WcwYh9sQvcH9Umf18ssaanyYXHRhNdQl85VvYOu+nQcdijz3vT7y/Patx+eOz3j156Twoyarj0vsGqu4S+/8J5o26/XNHTKjzfqaT9dLH8yRXzLkvkda7ycunxaME2kXcfQkRWpzdt/7xPK3rF2wUjDC5OU7N03pBxPWF13VnZDXvcnzRVVU3xehf/0PPMjY16YxUa4856b4++d8NE8vTG2Mvym4uj3/rtlRB7ML7yilKSetgETVOtBS4bHDeGzbD13zHvW7rjqLcORu36blbaJ59mVE9L8726KmnblR7aS/P0u0+vGpPpMO7GTbHHS29HLL59ee1ATffOX/0HF93fual8clXZkCPvHvccNOK2iYqldvflH/scTlUrn7HPd4qFycBWk5zrdo7zlU26fppjqBSyoHnco4/3ZmhYzz/Zt0tz1ovnCkkKrpoLVh1akGpssT/zocgbEY+13u0J8TpbBl6OuvBjW/OJHf51w80Te004OH1qcYe7vuOpI+v6/Bhf6nYoSEddz6f9Q7bZ4nz7/jUtKVPcbHLWVYmbpw6wHHlUSTVeRqrQc3fewg3u8ampBgee3N84Z4Da3fanpV1zvc+PLek6qnHrgQkD163J63VWdnjyNIO7Dgdm+R448GrGOomRQ68pNXg9admva51Tb3+m6lO6uECkpffKXD3DZ6p5S4KnPlvXsjHBt6kqML5+tKXBtM7fLhpe2vNWX7/TSK1dCooON9/PTr1o3U99sn+nrhFVoQqaee73K3W3vqua4TXTO7iPuWBY/cpTgv718vH3XlxxuCMk4TmkKFLH6mLx22lew0fcDpd44piwr6gjtEBVpM5mUWZXJfF9Jz+l2tXv+CZ6U0hrWx/5IYNPB3gL9frsvUU9pe/O9qopeoX6DtnRGU9ig3eouO8ULDio239E/wXzPAscLgp8hid9lpFdqKN6dFibpePHW06+17ptH3dh06vuiirfc8p32+oI2fXYX6r3zax6RJJs85f5G+97aIddzhyqELX2+qSinnM7zanoU7D0k5hI5yNuA6L6tTWPDu1z6eDgT/KvR57ueX1MgvkQj/xaK4sZikurI8MeW7y6YzL+7l6JUJ2H10zFn/3sdvTKc/eb14SPfnvSPDmxuMmt+vz1WR+3hHfxaeqIuTtDUCI5o6Qx2CbsSkG/1SUmIootSj6W9df7TVq08EiXUzc0osLnKfS8cclLR+9qra1VqrzTmeAjed7/wlsZAAAA/jeMc1tt5fBeKMYy2Meou6rwl9/1f9df479///+aQCA4tDqyeWn76+7b1RzKs874jZi+KsZcUb5l1ZdS/6Crvd3VlXuEFrvIeV4uyRjutSBm3h4JjUWZKoZGiiKbD6f0cbXrSBlie7p3nY12fUrXl2uste1e5x7V6lhms6FV7pLkwEH18ZsljxifL94akf9I+I5DcULut9gaw4UHcjVCIsq/P3r99HFE5I+60CVWd6SqpXNmOzYPcTyiLKh+KXivlvwtz22z9fvNb5NuPOolOV158PhNuw6aPquu75lmWXRbYL/56qp96R/T3A3Fvr1T0/O/LH3qgvKhRLegmz0yoxyPrFo7QOuM5qeVP1umhj18fiJar3snQbewsvnxLuO+LfesDKnptvPZjhuxKf0uzElrn1W50n521oL+i46l55TXpM4M6W431rh5/qTyMzfy95Su9IxUvdwrI2xXVd66MYpBMRvmRd8dkpTed49R6P7K7eY7nyX2Uw5Nar/f5hTutHDjG7HW2RWz9CSsxxusaX/Za5Ts8NVtzeMXz7ukPuLwgMEHBLOPyoeFLh+rOTn3e03nN1s2ZLuKGW5eNvL6q5t3HXb0MhC63eRQeHCfv1vR9lGTg5benblvRtfSovNLPUxHjrNMOVG9c+bwWZvEZkWd0er34Muj2T+PL7iaXXXFcWm5x8XgHeGxI72sw7+qp3iHfCps9zlcojx4/oH1tt20cvduNj44eH/rC1EtlxqHhcfyH9jnzGvqmrZxt1Vm9JXoiLstKiE/r377HmB+P+5x5w1us3eqF2XKSg/a5qX8/tkTl5W6vsGXO63L7Jijb9I5SuDfqVVteMWZ6Z0dm7/uSTySPvrnpbNCt0aW3Kx3F1e5rXhccomkvNLw/ocrzoSrRPoKJc4QyTlhvHCq1au7Bnkp78tiiv19D6UYDu3t4FeQr76u7cF8pTbPQTr3pDRGOTkZbhE9PyCkZmznJ/faDs8yuLHacN7o1QPWLD7+ftTPGQ05cz9Wxp3RSMuc0NJrQKlj0aHO2SpXn8kbRepYZi/a0n/1fL2AjdlHl8mqlVtHfB2orOyf5zZ8X0W84pZrHuE7FgiZFHdu/Tw6wqBXhGeWdUB6lI1c+8P2DLFG3TZPLwVT9RPO3ilPRuf1Mt1fvrn+5ujPtRfqzNXC395TnVVi+HF1Ts6AC9sa1rf4x19PbH81KqZp+/3i3caV9WotiWH9xvaP6FXTGjZxfrcLV++qLo7MW6Eoo7g65cT9gzJJ4at6pj1dkqZ76NE2g/LPvjXjrwW61oxdt1PJolth3vpNw3zNbspoS8/1GphzL9x/6qTdvgtfT7geXLTl2ISGZIurly9/zO/XaZ3qoqEen3bXpRs4SAYtfBkYnzOxU/SP+DazruUaDlVPXVLeCRsr9jWYGSvzvsuj2mm+myUPNz24GPJF+MHbSs/KSNft/on6c6rXKo2SaxvpYjLayNtHODj2yCsVQ3ejBxnTZRs/Sg83kNbK8wtrPeylofYl4L3VkYqZS7P6jQro3WGhMN32zVDbUudu59w9A+SlDjqd2XH0xd5zlcvE2oNnBsfVpcncGx1hMsXjzvLBE4NvrLC6LqF66trLlwFzah0q3cd+Oh6ytUeTZPLjigtjNSQC9i6entkRHTdwYmqJy+yh/dVzdS62W5wdIds0OW3ax4avL27En9qtdq607+EpZQe9O3/a3SPGbrzj94fT+35f1SqyySI5O8nW3n3pQ7WGpFd3E+z3BDfHeMc1vDj4xMrhdn6D/ugGTetYiabK7nXSE51sqpd2atBrvbhqj/IZGX3Z+F3VkXIl6kP9QrPTn2yW6Jv76FjWgWi1QONjNt9l56+oOlboZrximf3i0GFKmT/vFJefGLppWvmMyxrB8pGDPxj2/d6avDFxhde26Lgrs4NtjdvsGnaH79/2MuBowYioki4zu4+0O3zV0j9TY41z8rpNli7a64NGObcUrtiRrdxtytNHazWVx+7ob7BqruZU2TeLzCfvU4kZKKirdKiSCR3eMrVCQ+rG9aQN043fRr7wHyFyf6uUzLOkcZMmt6wWrizyG2H+vWZ0qt3o5pjbi3VDbA73S9dzKMu6tDPB3Hjamd3RgvyQFefHNW33t1yS5fkySv3wnp9llyNiR+h6uXZzbWtZsuqAQsGcNYpWmwd0N3LvIVsTMVNYs+8Vxd6iObpmuZmuIxZIZ/7Y56vYeLmqXVLx8qzYiCPH7u3adS/QXGlT9ftHu+a/kClfaqveq0Q08l98WwMAAMCf8Bh9UuKFQvTjnz29pq3d1v7X+l/k17ii4N/r/3CBQNDZcI1+4qZi1+kqE4yF2pPHtGm5VOxxH6kbbOTk6+YV86N0yJ7PDl4qYiKbXpzJT0kziF+s13nTQNEmlT1C299s7XEk6WZuvKjkyUnifsICgaC7dL9PZimdf1xxnb7eTGNBoeXDU3HTqpc99xzfu7i16UrEANEfch5n3/7cE760VjErvfeejm7FNn1Gm9ua1GzZWRwUkirVp7NNbXG9cO8xE7YPXjLr8MYusgoma25MGpqz/0VGXof3toAh+/TGZdzdfHSGgW6UyF6n2c+XB/b3a3Wout/o0zjFZduPENucvSMDbV/vlLm1Mkr+qHpu3+mx17999/vSZf9T9cgNSRnBM/3k9J6J5A+QHZpn9GRrQuAGx3nr58kFpZrsv2ha3PZFsrne5tFr15DSmDgNWfOg9vrix2uOLV5yY/agqA7zVB3facenaOmJnknpGq4af+mNk9Qt/4IuQ7q5rI4t22zhvFD3pcrCd+6zfD9GdfgEz2gsvhfn3Tzms4/zsRKLmSvaV4iZfXqRKlbSW7jr0NMTHitbyVnkT9vUZ+Ilo2cXT7qnrnaznX93Zbppjp2rglz/it7LnZQ9J/pc3l5bIjetsJNnzRaPWW27jkpfrekv9mqY9cGw6ycXzRE5KZu7Zo6Nq3b+8rqq9WaRq8+XGjcbG4iIjiutN6gbciYna9PqsPljD/Z5n3JR+VG4dOfJW6Vr79e2xq4zLGzKEq4KctTPnv0jr0zqzRBj+QzTxNpX1mO6TZidULGm7q3Slap7LjOm7b2ebv85R8xnWKVCrG1bQr8JQ86nrklsnvwtflWr8bDhzwLejH/+9rLKQPEIuzjbFdK7pz/XTUoJ2b6jOXnLbbFUhUulPncebVlrpLyiOHLq0dK77iXWJys/x+qcKMh0txXqa7uo35XChNjKTI1JXctPfjFZfWPD9/btIVIarpMWHQrZK+vz7Kj7Bhf3qFHXpdd6aQWb1N6/eenThZsFE2/bOszZp+gpkXV366XeY49mGZ0dEj7dP7X/IIuiCVe99cz35t6eO03l3sf2o+YD+726vW6npnm18N7v84eo6qx/NbN2V2l4xT2VjJeHno84nWTr83nil1Gzo2InuiSrio0baXRXd7i7bo6c9hYj97T4pY0HNp4y3bTPet/w6JkKF7Qnfn5o3aK60M69q/mMosFbtrl9txwzabF154AUb72VqlpfS4/nj0oYoCR9epSe/jOT20sV5GY/6aL1QsEn6vrh79KRMlaVAf7ROoqejT6jHudZPGp7Fn/0XOqYjMjPmooF5maqGdluOR8dxGNmuq07Fqej9+qF5oKhh+beCatx2Brf72DWjPUvHyq/eng39bT01fLouvV1Oe8sy463PeiX6tpDrqNmzBGnh81Nc91vfBqXOKVrkn6q8ZXDX4xyFkfpStt9jvzZYOUucvRzh4xOuUpUuGd31cPd/RzvlkjZf+v/UHKnev9Z3V6d6b1Lz7VQfECty23PthFl+Y/mRlTMqrrt9+h5+4dlKVM2hfZ4fkv6zPlpiTmnAh59qI5vm/TZZdccvc+3VsdKZgR2vdf+bLp1ztzy8YGF4U35iosye/6LL4cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P9anUUV/9Le2Lrui2nvacUByz5vnp69esuxi4MrYjKNFm4xaf5mHlR6Pfv0AdnHUYZT09rNPlReye34h8Ey/94M+9UVFwiEPgsJBEEGi78EX7/V89+WCQkEAhEhGX+BQFZI7rqs0B8SNL4KBIKlf53nfxzM+qy1/N/aLeGd/8Ny6T+E/HG7BJIiv+fzH+Yp8PqHW4T/DxL/dZ4Ja10Jfp1slHHOaNKXunXnxvn/j48I/dtnLv46nwSCbkv++PfCfyfXwdF52LBVy7wPjkirXfyup3Na4kwLNRvbk1JdFu4P9YrSTAp5YWk/PF1CTCAQdPn1+je/z1bF3yv/1c4RCAQSf5Ov9w+2a+D/5vaP/JP+gF9tp1+t5D/I+T2u/If+H/fNH7/Ev4n9oe36D9b3X/X3jtnfEPn95s/m+58l9Yf+/125/yjv93b+voxd+tUO+0/mi/x+CQmEhQSif12di9D/OEcEf3PchARCfzmW4n/tC/+lL/w38xX7j/MX+kNf+A99EbE/bNdf1vvrRBMREvqPy39/7g/Lf+8H0V/Llf/2Wv93WPzJ8l6/WvFfX9S2333BH9/8O8n/6c1ft+svfs/rw/9iLv9PEP6ba9DfW/7XA//rYEj+WiYpJPc//U3H3/F7THSUVHywjKipzJ/MQ+iM0K98oX8qX7hTS8G8SUrDFP8sf4nwr3zhfypf1y54k8edzUP+ND/id77IP5X/6viR186KIX3+dP98+L1/RP+pfFWd/tvESxUV1f4s/8DvfPF/Kn/I29TmnNKAij+dv8bv/dPln8p3+dDVafUBt4d/mi/4nS/xT+VPDK9znnT0efSf5uf+3j+S/1R+Zrzpy84m1y5o/Fn+3d/5Xf9z+b8eJNQDVL8ZbTUa/6fn56Tf+0fmn5q/zGw3xyerRAL+7Nop5P8P7rAAgP8l+V/PWCG/+v9snfpf9Tf1QpyM0L8/80n9ev2frNX+bT3d/g/mAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P9i1y+CtL77b1H7BhonaKBxd3cS3CG4S3B3C+5uCRLcIVhwDe7ujbs7BAlOcN6qXU/mu97a52Sf539d0zX5fNevJ6v6BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPi/w9xdR+6eOvDocIT+W3pd7tAwQd2dWzs8fVw9pP7XUf1rzpk1JNzCth8mhA0EAnnKNC8Z6+XWpc9e1ugw4MQ3ZytciRK1T6dn0c6ejTAp/cAUK2ZMu/xw+fKWGU7F7JJ28W+3H54Ml/r676sKtY0yvGizOJNKzJ27dHThbdX3pMn4c7QLrX+LfGZu+PZHghr0PNqwaq+Yq4dFSZMr8bAIx+PG/eeuoEAgEPffrQYAAAD+azR6kmf68JGl+nX7Gr/KgM/ttqfJFe5/7fDQ/8mDAhECcQPdQ33ZvW5SzziNu50f9nfDBCHrxvbtHKFXqYkbj62t9E2E4StnX1zcKXaGKG/HXEr66veypabV7t0305jVGxutr7xo1Ns+P1ydujtFkeyxL6dIX/PZ5/KDJo0JX33YzwtSLbty5lLqFUO7p++9enHMbacTFt16c3TlU8Gdgwfcbbe35tYJtyoULfnqffVOx/Y9KHcjQ/XS3SotbZGg219F05VtvSLirHW/XK0RsVOs+N993Jp7a4uCLx+vT10wWYFK8/vlyra3wdSx14acCTm74Vq5heOiBZb+tqNmxde7G2SctbN75/R//NlkbbowS3OWP9o+VP7QtzuUiVwlZftPpbN/PJg5T7d0J1r2KDYoZapl8+bkPvBLu1j16gVuVwnpOuJN+HytZw2OcHxy27Xxbs0M12pqgmHpFmeIG2154YiVQz41HJJ3f6sNDYZNT/Ok1rkx9UpMy/pT3eibFtyuGGiftEu95VPXzby78urAs7kLhFo/OWn6tjUbXrg95fcUZzIvz1H46f0GLwqe33T+QNbby4sWWhgz7NnCORMvyRgxfdbHke4leLT+z4/1ep3ed2F21TFLDi/be2tl+LVppv9eYULM/DX/3LSx2dTaJ+Y3jDI34cKTRVqWvdH/RsT6yYe+GX11ctOwYWPvjNxtyPoGVcfOz3fzw6psPbLk/nV6ymkZs1e5GzFekcq/HazTouu+4HXhQi2MUGTB1SZFbj/o+Htw2ualGiyv/G5Mv90xr/RbH6PNwxUbHmTcPi3qiR0rFh3Kd69D/JoJC10vESbji8slf0+Zv0OCLj92Hbop7+XOYaO8+fOXNSFvrpRZ+ibimGwzAz0vZxn9rFL0In0WDy465viaoDF5pgzYkLz0pFJ7ZjeZXCNR7QufR6x51z7f5Y/TK8/ItzHfwHxjlmwcWKh3kUH1Mh84FP1ExBO/7QsuU7Zbh9Nrpr3+e3WRv75vUDhz20nlN+S9+c2u8D1m5c5beVXzz0XWtKgd6mCKbF1Xl3x678fnj+sMGjdpwbgOYVaNHFo9accnM6duanZtW+aZUxeuDfWoV6luF6MemhKcKP+J+I07b/mxU99bZSIfalL63Q/dTpZ4fSvZ6veJazeKdj1v5/TfF472Znr2e+/+7j/p8s2Tg1vXHrfkl315F0+98/Zcv6onWlVKWeho2Exjf/4+/8dSaf8I2yHB/RlpSofJPH5tsddd3m+Km6fZ5Do1Z00uGFJh5OTEo385X+D2pEH7UodU/GN2ys/pht2qGRI/5ZCq8QKLclYv80v5cCvDNS38OmPOrLF/ilki7IC6Y3Im2dKs8s4CtUr3Oty/y8w6W85lKxFy5lC+mlsm7fqc7FLsTomCiw9IsmB01lWvZuQuEr9W6Hp79q7/YUCTH/NHLzf/WN0l2cJHj3OjWMj7Eke39+/cfGqY+anPl0i8cdLZxB1KZNrd7dmh+FkP7Yt97UG79u22jS899mTwj3eSD9+5qG+eEUcLfo7SNMvDFgPXLO0QJfKjiF0rFwsTLfjznVNtRl0Y0KTz6M+Hvy21/s7AT32n3Sr/7Y3c70YnnPJoZrVWmaM9ibQuc93jP769dPrI7GvdmiRZPeJauUX56pwInzpZgWc7UgedOHCsxPa7X3Z9nJLx+KoGGcpNHf9blfq7P+SfsTR1zBzvB43q3Dfz5ZXJD7X/Zm+eKvW6vSzyYfaNw7MS3j395+ABvZLESNN1c4xOizYlyT09c5P7x3L8VTzc14RVDz3r+vz40mrTn9+Yeu3541y1grYfz5f9ebhIFeOsKfx3wSXPttwsX7DG/vdBv6XYkfm3s2Njrot7unas23Nrtw5KdHRq4TtJg77uHRVSMNrBH9esTjEhXuVfRyxMfWJW/C8J1wzPtvvWi58qBncd261K+ZCnVbel2vxHyJ81rrXNnCXo6tZLB2P90KZq0esH+90fGWV74Q2VMn0YVymk1l8/b3nQOzhL2UJVfji2sHW7TgcK1/+1ye4S63pGjdIrwowDKYr0W52034EGWRq/61JjQ5GoFWdPHLV+V+gHj4clrB5IV3tP/UND4kwZPi24fLWJAyeleNf8U5+WK/vt7HY4waHhh37eGrJ59bJ5WcdkWjO93pEcN19H2fxh4eFE+e9mfTm1Q7Ryv/Qt90e6B5UjRatUaUSVxNE65CqZeeORcLMmn02W66fIT8a2ytXory6zNu88fzx6/V/mr919IFyhH7t+9zh3mHSRnx+pNH/SnvOPpv544Zv5fQev6hylcOBizmZLa3wuVLjokWwLAwuenN0Q9cFPp95EqtVnXbzCb0aVj195dbqsGx5VeDo6x+PjxwPnCxZLP3V98K4Ov5arkT+kSpy2164n2lLh78HpvrTJ2LD18ettY5zosiD7kbHVHj7YFrZX/udpl7ypMGpM8RuJMtyttbL33txf5i3aFfpihqCEp67VD1v+0LVqMTc23PXu2/Tth/Zf16/Uxdlps/64dNfFj3vKtT8RunWsydvGhDuXPmRHgu4zLy8O03fW0uuno/X7JsuaIWt+HNDlbrw/3/ROMb1CslSVPhRc8Pnzuk63C0dd/WeOOqdTTh65Ifm8cL1S/L6/Tpp0K6ckfVTrhy+hwr6IWqBFmZ3ZQq4mPf/g6IrBRWvfXdR2/s3GLT4nbhpv2dxqhTYuD3fx6bgJjYIe5R5S6HyMN/GTdk2+/vHpDBdPndz3uv6oC2Fy33oXtHxquU/H+r59frX0pXG5oqfPEibvxL4x+qTavCvrtHRhi9SfVrxj6XbbZtdqMabhvQHpqx1O8WuJ+ddP3p9Y6kbamRveDsr07sm+TavWTf1wvPfZOx/6VExWu2C0zMmL3/9SK9X3G48u3bmx4bqiH3LmKPp+aNYtXQsumdggwpXIDeYvyblh157khWetbTm2XuqSq58s7VD25IQxsZqXyPXT5qrz+7WPnOrF7tEbn1W5/Hz6zWPRT7fO9vrCsUQZA0Wrnvxz99mvjyPWnN1u4dqtfWvmyVNwzZXlQ1KErzc+fulC8ZK0Wn1parIFi9udvnZ/bL8sazvPW/xTmhqByWM23wsXknbFk4EbRl6pPjdKz9NlZ7SeXyjKvTEzb1U68nbbnH7jjzZ5P7hDzro5Dq7/7UneqU/Xbv00aM35rek+bBm050O1D+derdhZevyI81WWZnlX6MzpU5/27Zi1ZUzEyGHLZMsT6m33OfvSBi9ZmeVVqzRzY98/NDnt+bUFX6RaWD/Ghw35gs6t6RV2TvYTaef06P9r7i+h30b5tnmfRmWi9Cz3fd6Gbw4njL6h+vvBZdpWvN260pK45XJNXJ/x+9DZwtZ+VHjDuLj3d8c4dbre0xHPQ8alqVU7xePzKec36vRscuNVv5duVnzFkGnxM9WIML5vunM107UZNGNG2QYVToyosvLt0RqLtg+r2PRTi6vr0/Ruvvli8Qn3h285HJyzxOMS7Z5OPnA625dx2eO3exG6fMZGt5qGbFz3sdHCI1UWBt8vuHHw+7E3P4WMuNL/Tf0wTTJnTJ450YZVAx7O6t4ndqDSkJ7rTlxI2uH0x43Xyxxc3ylwJOLhYlVyz7mYZlyoQ3UHJP91229JHx9qnSpr8TmT68dYUbnuvTh/nPyYNtPJFDfbxv0mEAj0bFv5c9E6Yeqe2fh48/1SLQJ9K92LMjH8oKjvpu94lGNs28u/xX0c7uideo92lk10NcH58IHGa+Kv2/hiW8OVA3Z1iDYr185A2aJLKsb743n3gXeTbt6S5n6kl/PnHWkVUjn//jgJlx16eTbd6JrfFs81Osbct3VnrJ6fOM3rVhv7rRr5y4hsNQp+m+hI/QwDS8wu8fybYVXjvzlYtubAs/3S3T+35XjWxmkbrg0VCATObFt3YuWLiWFK7gu143iPbBMqD712qcSzpKtXVmvWc/Xhn7d++SZ7vJ2xYu+p2211iT3zZ8Zbs/6vUA1XNn98f1XZOifHtzufp3X5UwMSxeu4NnTlji2nJoixoMGBN6MbF9g2u2CpSI23n1rwJlejUccCpTbO7NoyTaI8gRQzr+a6ubLw6FgryndNEzN110aX65zM+DF/hHQX/3qavffum0NWbtr0+Navw2eFqXR2TovSORpej/1rvDQJXg5oWKV1vyNzWm08PHVJ7OXZDocpf+fQzM5b932p8ap4uNSDVjRIX/bapnrXOjbr0f7a6Z3B71NsSnu0Tbyf02+4lSxchasp1ib6buuuQz0TJv19Xet6HdeED72o9fsKXbK8ONc5yv1SkeMlSFr7ztCfzs0avXjhjQ9xW9WouaHh0furbizu+HBD3XZZIoT6funYq7+2bdDnVYKKE7+d0+b0lK7R1+StnOFg3erXtvcKe6Hem4pzTjc9uD/Dxx6N8m9b8OnDtLBjg58vXtVh+dlndSLlPro8Z/KJcVe9HDb45ZOpE/tPn1doe590M7OfXNg8eb/+sd6d7RU1f6OEKXYlbvYuS/6DBw5NvXF+e5KUGdfdC5MoOHO/mRnLTkr97F+eF8D/xc42H1f7XcsSYzOUq/4pfasXS//5P3zY/+RBgeiB8EGJA8UmN6+WMU+tD4lnZm83tN/KmyeKZ39Q9IfcdXNvyXN14Mtir+JMTxY8N8+0W5E7FOr8y4JxPeb2CFf5cM7cVaecvpkud619fZLvLtom1JlsyctcqTjg1PChYT43qb9+UMLlYTKXfxh7Yoy5pwLd7id4NiX6sHTPWs37cO3Hud8ubPzbyp3xd5dP3/DF7dRtC/Z7fKdqklcTBo678nnZiHDD84YfHCbW2+VD7rbLuCDZqmjl0vz8aELzK0cKHm3SpkuMXjGzPmucYGT0JBVm3rvyx9uo2SN0CU4d48qho1nC5086pXK2uwOz5Dkarf3izxWqHum86GPjaRGmxmnyZ87P1xuF1JpVp0yWpNdWTfiXPwsAAAD8H/Xkt039f05w7mL1S6MGrDmXtf4/+z/Cf/KgQNxA+KBIgb5LvzY61iXW+FOnd0TN8/fUCW3D9UnxqXLcIddnToqzftmTypdLbEi8bU7pjyXillry8fHZ5WPKvNzQOtqMnN/mj7T4Qphz368cHLJl/bOhG/vlPj96cMnpyf/lZwMAAMD/KKvj17o780qhLLlSPtq8asLRc//s/8j/yYMCSQPhg74NfDvtWpLJ22YdzDZlSrm7pUa0vnE6ReJ2HTPMGTk75t78i44NnNfrxr1QQyftzJN39qsFce/EGRy7c+gaGTbGOXk+JGe3NPFShKtUJOjq3h3H5x97fetUzCp7EgzKErtzw8dhF9ZqH2pZljGD5r7JFfnJhH4jws5I/1PRiK3n7UvccmS/R1VrDC7fIOfUL/dq1m+VZFumJZcLpD/VuPDAusu+Dnlxr+eFIa+rj02/clDE38av/5drBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/g8o/cOSdNMPfFcrY+p9paOnyn+r7s6tHZ4+rh5SaX+pv+6cCvnUuF7X0Y9ntchyK/LbP2L9PXb649EZNrfd0adwje7lUr6ZlqV3srLt3yzd/uHSxS4NbrYt8MPCNPl2Hyq3M0yxuH+vWfjniDRzOnXe8KLWtgRBJXplDLu47ocBM9buzLTs9I6fD+9qdnBOnDGROs/7beOFp39MCMoSZcbw6EEV/rkrKBAIhA/6d7sBAACA/xZ5XpyP0LfF6QSPz7baNqBXtnf/7PCw/8mDAhEC4YNyBI7WGHHp/O1EZa8uurB64vP0CyYkHHoz/7iQc/uDN8Ss8kvu9RE+PzyzMULT9E+rDslcaPyYfjeaflfq1uVKmU6vufQi8pEs04pmjny6wfnr8+KUCd+rfcuLBe4XDjU2WqlnWwtP/+5e3ks3qmUY9SnRxJqZnmcOH6Z/18qZV674lCK4V8OgqhVmlj4Qqtubei87zTm8YPa5c/3fXMr/OcKciBeG9N1Zt8zP01+sbxTcfOL1OO+m9+s1O3K/HtuPpZ9+6fedcQvdrn6/77l4v8+62+R83CstJiS8PLnAod6ti6/pnzLNL5O2tnnzJt+FdhNGf8kb/9b4R3vmJK0WM26h3CViHxhUv/LOmqOTTM94qmfqUQ/TB0oFQtWMWikoa4IoyZ+HurkoEBQUSNh6W8zh/aZnfb1p84T3j0eWznT513NZN7Y+XfRT+rPpyt0/MLnf8qQjg7PFHrp14v4wWcacGJAyOE3i96MeFQ7Z3+xWvAsR79+/8zLP2QLj/lrXcnD2JME9uyTp+3jKsF6Z4vfdXLjQ76+rDxwyZPqROJnaRxg/ssjTe6mKhqt+sNeFPmVH1yv1TcNYd36deDzf+VHVctTv0+PvCcO6/st/PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/A8zpFCh++UG7U/yqmDGpHGTTkpRd+fWDk8fVw95ubtaxzMrd507VPJr1QQJ60xqFn3Wvp/inahyY+JfjcueXDVm57V79S/sjJKk+sIz51JeS5An/o5jv9ccdbR01ZvBo8d8OHiy1Ijc06otK9J1/e5E2a80+eNBuuLNSj8pGzda67Ar6tUbU7Hp7/dWfbyyv0zUNsO35zpT63ncQr88bFl48bUJ/9wVFAgEwgf9u90AAADAf4vpe+pF2L2/0IQYwXn7fkiU7+9/dnjY/+RBgQiB8EFhAr1mlegwbs+e1Bv7FS6Za9y8ed3jHIr4bmXZ+//y+QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP+LTm8+naHJzNN1d36N87nCsItL6+7c2uHp4+ohQ36v3LB5ygWbrrbJMDxr4+xNGjU6Pn/tNwNWt8/WcWCf6kWuT73+OPXaKDuKbkoZZerJz2271ap/Ns2sBR2r9pgfvlTOp88DGcrkP5Mgwt4mIxOvGbOx5eNUmTMOGHv685QKNb9PUDBrzB8rFglbv8Xx1pUiXg6bs36/SHMeb5xR4Ub48vs2/HNXUCAQiPvvVgMAAAD/NVo1Dxcz0dRTseauudrqwIMU3/+zw0P/Jw8KRAjEDaQIBKcs9v7x2BVXN57JWjfUmUvLPq2/fD3ZlZozxzz9LsOgjLUeHS/xZ6vzVRI9CT9t7+GXQz+83XOjQuh9kecemhZ0euTin07cWDv/u7wjj5T/2mHF8yYbrjxJWqNu/VlzIoeMbN1w4IWLGUY/HPQ44YUrjQsWW//Louip0gxpG+Vjg8gTN3xTbNuYEaPybsv/9M2C5sWW9Kg/61n9KIc3TkncumO7zhHzNKyxclG1Mx3/nJyrweS3ez+tGdR/dImuE3fkD75xq3z/HJ0z1zizpFzLoBtHbg3+9pu+s1c3SFnpUt5oW74fWShN9INzk/0yrNnJnE+q/9Wv2sBz/YqN39Ho16fFt4V+c/NhpyarS/7ccO+D6y+SrPlxY5lhW8bGmpqmTIyjNwdv+zuo5rzv6vQu+mzFhME9F0/cUOpf/nwAAADwv+WPHyfnbp2w14im73uXPjiuedh/9n/Qf/KgQPRA+KBvAv0/jj+5rnb/FXP/nDhl3Ip4PzaqP7N71cQlPzf57c7QjpG+69l9x5IYo26NuvGuTuaIX+t9eXr7ca+xOUY3rf6i1e1j1aKW+7DwU73Vl78fMCf0l52Pxr/PNH7rtL9ifH+oWOp4hbqfK/HiaP4GxX+r+X2Xqnv+5ToAAADgv9LwUvGrnko5adCMpxMuVui/dfg/+z/sf/KgQNxA+KAIgQU9TnRNkTrqh7/LLe2/PEK2filOf/dhxd7p0X+bcnnutVTxLz3bcXFQynyHxubuHanYx+bd9s59l/rrX+/Wtbv5fbqJV3qNTvsvPxMAAAD+RzsV4+71Z5kvh12z5f73r3suG/nP/o/wnzwokDQQPihMYHOG9PUqBUWokqzQ5Tq182Wr+mZ9j8kHf2gw6F8+HwAAAPjfcPv0w8rLurT+u36a82nWRmy975/9H/k/eVAg7f/6/X+SJwfz7UizI/2m9A8L/BgjyfRHhx/WP7Lhh4IPI43aPHhdrUNrqhzuG/Z200Z5Kw2q0uBzwe87lX3WIFXu2nf6fu64/MCaPsdblD5Wbvnal5GbPYn8+1/1QwdmJj5bI8WHolcHTd15d9f0Qy92PEocc+b+Ocv+5ToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/D9h5/8jd0H/1zb3hSoUaz18NjFV359YOTx9XD1m1O9zUe6Uqvez3es/j7u+nbG8ebsv+i7+szlWi44pRkbK/i1UlSt9Gy9PNKBJ578E8mVZ+93rqvFjLKnz58uyPtSUzjOq+tMK5TX8mWh+rb4kot4fc21Nld5ws0QZWTFSgd7Q7qxp3eTRtb7gZa3ZNzNiiw5miNyYMmfl9+5O3lv1+u2XcEQn+uSsoEAiED/p3uwEAAID/FvETj4+b4f2ZAesOng71Q539Q//Z4f9M76BAhED4oEiBVyNyhy2Re0isms3+at57xuTp7eYeWn//2Ie2YYNvRv+6JtB3wIG5YwdMGz++9qjDpYLrzdwfq07gcfXmxU9sDznQ4lKadDE+FUmSafahcTW7Jv/z8ZetiSf9y88GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+/1Co7LoWg5vsmZNwXqvjtTse2VV359YOTx9XD6lZftjtB8eGtlk5vWCGDFnTpV57OOrdLd9V3d9x/Pq07Wp3jV2mWPiWZbvOqBu15Z1GsR8uy7F4WYy7M2bPLZ4oYYqykbrv3B4m34Err/IV+TVL1SYlvmw7PeKncy8LjOnWNM3S03uLhi26NFGzQ2u6VSveLN6EDXVrVq68PVHb59+0aPdbpwv/3BUUCATi/rvVAAAAwH+NUN02D2qYcFTve9dGDG70ae7Wf3Z4qP/kQYEIgbiBcIGgQRMiRvvlpzQrltacWmXq79Fbvsy+I8WiE3fOJPmwNd+bjvMf95+baWGqG2kutJ1VI/300ev/5WcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/w8qNbF/qGWXSt7+4cdqMda2H7MvW9LUdVq8uLtkyk/BVU90ClezdetPzQtW29Zp69g3VaqF+7n+X6Um/vL37c9t7sW5Xv5r0noj2o4d/uRT3+JxaifL0jJ7n945M8UoFSlF4O/rpW9GeXN2Stwrd5fHf/tiVp0jpzo2Lbbn4I9TH0Ur/l2EnxNUSdEk+rUEGTL2e/Trjrzftn+Rs0+7LTsqDTp06Me7M+/9VPLo1/oVNjyq9fRN3sth0yfMFPuvLbGPX9sdrfzvmZMNX5I+bLZhmY+PWrqg9/3y5XNeT9W1Zao4yUvHvrM+R6ehIxrNb5Ph49hXi8KXuLoo4bjQSxefSlniXtG0sWdMC+SfX3jPzeS/fK65YfiRQ7WHPP0r08LQFRsNKX/j7JPiw6Ztqfdu97Yqp2K0f7Nl2tWc36f++rb1i3Shwt+JuC9s3Zj9f5qWMN+gSXfKRGpTLMr0c/MSLFqZvNXcNxd/3TAvW4qTnS+l33emRfdZeXNlS9dzcq18yeZlmR43T/8vceNvqz9pQp8UDaf9+GnZw4PHig9KWujPxC3zJcv1pcP0wftvtN4UY1b0lw9m9Zg3JdaP1x++jTvsxLG6i7+kWVm6fnCbh48uT/q8vuarGx02PZhZe0zePDc3Vtl8OW3sF7FKN3lYtE/9BMvmtX1XZWS5ZllKxSh4KmK09v1HfE06Nbh6cJRbuUvc2DWta4M8zV5G3hlv85UdVw7+ffx85/XF0kYtViZ2qUVLD884WCNjo4t/nU315NiiQi9X7crzYkj31qNjln5fv9m5zg9LJU994tmiJeF3fAwEHj0fFi3W5rzxXmTM1637jE5vN5ZOnKvAtntnGzUbvWRh+xwHmw7PFOt1zBJ7Et/J0j7zxzPdViyIOrd6k10ZT+Yeseeby9OjbIuXeFXC20uWpu5S+cD9fXUixGpyvPy3w5YPaB9vzasxV7JGyF+ocNRw2Ya3CVuufoz8+ZOl+flk3HxDY/RLfe70jJNbyxyonqfAhJQ5dmQt0W/AL4saP3tZs+nD2d/tLPTiVPZS49/Nb571wKnIMy//fH5Xo90/tMpaq3D76p1zR09a4fqyrBPSpI7QvNq+uX2idukypPHkXRMjtft6sOPAsnVSp1+Ub8mIwVvrX97QqfuCxFszfTu9T55TMwdXjzAnW7iJ3z7ItqP+dxHL55/Y7G6GkxFyVosZo3nvT4niXDvVrkH1ehuvJK9X4UbTikNP317e5v6hczMCUZbufrnhpwkn+hf/817bjP0uXuz9cfbA7RVyhKwbmS7P7lS3kud51ql0r7Wbm96u+iJpjSrtQ1ZWyhn8fckEp5fUG1SvQ/IvadK2K15kxqedkVMWXbO/y/MWl+4EvyoWu2JwzPL5dyZv3Lpmrje3VgyKlT/NgfgHjp/K3CNj9xonYyXKtDukwo6LZY6f396l8tfSvWK/S5nh1qSUfW4mfPkq8qvEn6s8iz+009zTqS7v6/Gm1NOkW2Ol3z/i3MEdGYN/Pdk5e4GJ2ZdPydcoKM3apXfXNDjasOKImaM+heSOUKhD7CFTLrRdNb3og0qHBs+c+WOY3TV2nI4f926axrMT3w+bP/6TRY/DJuywdNi7NjWHdClwrWGFGN1fxLywodbkJxvXNz4TdWWE11faxby1uWvNaIfrJCudcvLPH765ubVB1dyvllab025Vms2/p/mY+N53b2ulHfYs1PWPFaYcDPqc4E7uJ7XCx5iZZemEU/tz/rSr7btVV+O1qJisRaWD93OkWLuz8ZckDxOfbpqtVI+T3U8mmnr6ULZ5D5+02rWzSYKLNW4kTLn/6PsHESMcal/19YYbsbaeTLnsSNMxEZtPnjutUYTdP0/5lK1F/Ok5pvyeq9/BXVmSx8/8ZGGov6aPihRhV2Bc6CfjEx1qcqxN3HJvzm55FCntL1Uq/fap68EFyUp/aFH4RMsGnRPE2ZB5RuQo96N8Sp7x4IylNSfsKZYn+Gy26rcy/FV9WOKR5SY0GLi1Qadvo3eqWmHTo8ftaj/ZOPLk548P63xbp+Cot53XZK57OO+gh3GfTYg+q+Mv9fe171ln8aSU5Wenjn1hW7hSBXKtn3657evhFz/tCPqtbccyuU/Ur7UmbrFl4c6ceLAwSY7s2S/F7luvxrQTXycfyrQ8VvAvmzc3rdW4X+J2gZ4fxtV42qt+l1P1roy+07LJyYLHSjz6bu2gJftH7w/eVXLHjqGvVrZ5t2BD3Zcr4y+KOeqHHVVirZo4OX+9NW+abclz5XqzPIm7tZ3QLterzhUunShXZdkfCQtmnnO/Wt2oVfoVqlM0TMz8n0+MuTD9dZuK5YJz7y6Q8vz1663alo/ye69x3yUo8Fv7S4v7htvb7P2Kc0sO5rzYtlrrhZlqVF+ZulP+rdfuXBrwukXoQCAQVHpcpeDWh8+W7NQhzO3BXf8+t/vwmWKbw/b4Y+/HzTUnpVocb9x3GeJvOTq25+jx8W+mSN7vfLduPeY8nv6pWJWJh5PEbrCuZdnaB8O36PNyRqUZA3a/bV+qTY2DN34tce7ntt1SJtnb7PjqZHnzrPqjbJFKpY50z904fOjAsnYV+t5YtO7lrFkT0hS6VTH76/xtx55uf+vX8GGTbt/dNfycSO3HtRyZKtTVXSda75nR6mTSh7fitNg94eXHUe+LV4j6a89IAyvlKDQmOPG+jn8HJ9p8cOP1A7MevuveKfqG3Q/2p6zX826MRcNH962cY2jEdpdb1YlVMMGvPW5cGtRtX4TR4YOnv0qz4MSpsn9uaVFj4tZQ/U6NKlqpesIT7XqWDPOuUquJz54vqHT1w/62hT6EvC6/NVTSNpPvNR/Rb8LzW71r7JwWr8Lujmf+/qnosVZ3j+RLHzf5tkVvSxUoGffPXx81vDvzaZijAw+HqpUpXvWhfX5a8KrH3Z+bVT0/r02eJHWDmldvtrF+uzRfut4ZvS9euf2hZj/8snTU5EgJt3zbu+fw60WrDOq7adi9/AlSflqbINuN5hkeHS37akrK2RF3vMha8fWpM7MjlcvcaOLGqds779u5rV727RleXdkwJ0LIs5HtI95+M2DbhcUVZu9JNSfOpFSPXheuUq5qzpEVO49I0a7iN+2rxwgZeqX50KUXTl6+v6Hk0gmRRjyt0aR36PX799Y89SlP3xK5isWM3yH22YebuoddeTbjgz/TLtyTI6THqVeJ06XPsHxmyUhDc1wflzD8ypsLC33dl3HxsFxV43/pE2X465Gjp/Wtkvxo4qXNtzwKn7h/lHaDUlfJ902LYVUO/31k77Et1wuFHl80V+R0LTZkvFKi2Zbmv2UJTlToSsLBp5YujJZydJHF8eIcKr32ZJWg0N/vCTUkXKM21xufjh3uh9Nd3+y41Kj+5E9hixx+MHhirXYFqxe5+WOOI9fXXMoQMq/viJSxeyRZsCrHmpK1vvmYa/qXQRUj5ckU++e/XoxMsyZtknAbZ30fpXmL5M3DrXmYuHHDXV/jLbk4fmXc49cz/rD3cIKv/S5UWndpwYXgUdfn3Y9SdNjvYSbtarP8wuzMO1pvahr/wM5ef9xvk2BzxoglT63tmv5r1YkDq1YYEGfo7VWVDjX8OD70pLT9M4fLGfvX5DNDPrTOlOBjx/FZpu5oMflKrrBd5l7o+N2n/R9XRw3kyl7pfamUKZP+sar+vWXtv32fOcLtg5durj21Pnn1elE+vGhdPe9P20uuOP3ku9qtYy86kDfb3Srtb/7y7OnKd0dCMk7f/Ln8w35Zoi/rNaJFxe97RqnyfcWPySPnCdVhz+hf179sGnv9k4PP4lffEH7oq7zvxx5NdGzXwV6TQ9YFZap0dMns48duh8+SpEXRAtlzVXjUO2Rc1kRNV59J9v7aqb3le5+8H5Is5sFB8R8XXDCo9uoIof9oPLpE02djXja7/vbBjihZij0YnLVe4ee/je5Ub2fG8j/UCd9t0dwlGZb8cOfOuoU5R11ZOvjAneZ/zl8WcVyu9guXRCq7/dsmP5Q43rZrn46L3/SvV3X5lwOdEl/8YWWBHulLFfkz5fgsZe8/CzdraoKCi4/Um9emeOf2+WfGfbW7eSBvz+o1c/fv9alUzZ9SdI6eLcOWu9/0aLS0RMimjQVbvt9W9njWD1/X78z7/2PXr2KFOtewUXsCE3eKF3cv7u4uhYm7u7trcSjubgUmFHd3d3cvFHct/Af/Wsk+3MmXL03Wvq6zkftgPO/zJiO5kxEtwYSD19M0KLSx3/LeU38EdpzebVbQ1DW7B5d//vtvNycv+XBhxYJRqQMeFgn569bjFwd8uV4tcH6MkvnKzW/4pdqTiQdixz1Z6vKFTcnuF0x8OHhI9gIdEzx7eDhVnIZ7E0V83+vcnpo3Bxy68PuUEQ2PJr9R+ffSny/+tCVv4Vy3i006VXtUsz+bDkkX90f17dVqHi3SdtdP01/+Viwo6YvDP83e/CjbzXKvyy3c23BH+5tNpzYttDfijmS7m/05vEicWic71khbplrGSQ3+Prnt7KWUI0rMjDysaqaoDbY1iT8nuHpgcJbb9dvn3Zb05IkS7/K1rJCi/o0NddKM6j9uauEGZ49MW5yu7egPrfuv67OgconU2ZoMa1Bm98RrM5b1bdW+dqlxZ++H61twec/fQ+fYs656jO/Dvg/9Ui1Jo6rTXkZP3yJs333T2pQdNDJ50eQ1Hp0cceN7qBD5Kn4/3jdJ6fmndoR/0Chmyi4vc1cfMuTbyorzUhwLk/5B05O/bHtRYOKcxdHeFN09NkTtFY8SZbyYN2zDwBdV964Kmp/1+KKYT0e2/zl2qcinxmdpnmfHju4769dM/CBBv1v5791K37Xb/Tj/JC2+O37uvtlSPD4e8vqc1j/tnrY6+bbnVUdU2ztnT9EZadPW/TntjD0hTn1ZVn5w8MKyY2eMWdXvZf2aZ5e3rhAx8FSF7wuORquT42bcPplDrihTMqjDtcBIBW+06dOg3MQKZR+UL1Iq49kff8adNaLQ/vvtMt3dmmVZ1Ehxx+VqOeTnx3duB2y9nL7648L5ivYZPHr/gGdb771uvqJ7hIHzQy0qGpD4+L3A180bTezT92mOCTvPza96OyhhpF1RNj1v1jTmlsxTt999X2ZAlH3/fKz+bEmk3HkuPajcueWtXyJ1ajx6VqFO33KcChO3U/4fTYJy53hXPe/86Zkil857Mun+ZOVzDPmS6UarOWmajQy1a1HPM50rvFsWdfBfoScnWlTwt85DYuypmLN6rwibjuU+NHROxf2hN/yefsSb4L1/7Ixdr+DjrXujldqQKEWf/NUKJH70YWq7L0/yVvn13tZ3hb8OHt0tz4Bd075vOD8gbddoqQ8Ed1r8pOGhREPHT+kwsGKpuKv69H15odlvafP8Xb7iyAmNh2w98m3E/V0V5uxOVnZ950+Fzw66WTpnkz/e1i8b7WjqwqdWZRrzeN/25FNKlC+a9WanvBca/PH614SPf/24utGMTyV+fvPu6qaEL/PPmLLxaOTRKbp9XBg9ZenX1ytcSBy2fp39PRodX1cpQftjzQcc/un12/IxZsUuPyZv/GspGwYtfF0pYbaP/fPlOVgpXqN9fTs1HNR1T6lcN052uFA/3KS1zeNvn3Lt9qFn5aqn3r4kUbSCaYK6RLj+rkn/Jxdjt1wfP8GByPsSR3hQLWbM/Cv3lVo34e7zYyEXbl7T/f7sU/dGLIu28sbDgWVP1St/cHqzbNeLz7p3L/9fBY7Nu/DjZcTamVs8/jNOuyhJfnqX4teupfbGztd0fKjVvyXMWaX2pu0R4+3vMa5HtodPhpZNn3T0o34pXvcum7h21gSXm7+O9jl/jnw/5uQrWSBE4zKbvk6uU+9C+YPZvqQNStP6ZvpC+WKmrTdr+5xP5XLur9bhwMchVU+9T5f70qyhW2YsqZwxy6KPkdN2H3/++5Kfo3TZc7/l+CiD7vRfnGjb+7N9jj1o+7pL97jddh6aUX/Y2wWNYxYKnzXOtTrJGgdFOnMp24Ul88LOzXp9xOO/zlTLGdiyZoSxzWKWCF6U+9b1UqGmbL2+vcm2wnVjtFhaaOCjhNl+elf4yZtIXwLbJOpXNVqSWfXHHZ82O2rQisB8TZd1SlK4Z7syHyfGbxOz+8kILXOuPrrx8cFOVS+N+zPPpkgBpwqe399x7rSAXlPCTVy+sUGR+Hci7+sTKkSoLBPSfLrbJtWr3jdbh2lwZsripW0mx5p/od2HIkuGjukUdcLFkquuxTv454h4i0OO+1C8yfaRI3++0iPiweXNPpfNVSlenAfLr02sVjra/EoN1uZr/WHq1HLhan8uVfP6hhfh8h9J1/DU2TMtEt4uOrvf3EbPi+SMEu2vZ0me1S2wqmvLjvtPZfzSK9reQRmSFQpdvEaaz3Pu1Xx6uO3DFiNzZaiw+vH2ZuXfXzkU5fjRwSuDp6T9VC5bnqZbL+Ve0O9d2O9pj+Qp0D5T8QM3Cn8JceRw0LlkK0qHOV67zJ5YHy8Nbbt/fNmzPwb/Prh63a5bb5beUmNHzl5/fw3KXC7jiH6zbiWYUahf+Tyvc5fpF/ZlnByNq0d9WPzv9X+dSjhubv/zaTvlOno35tVP2+5lKHavX76oq199KbpgXI98VdL0/PKm5ekWyRcnyx78OMTIr4EpP00s93nGlCNNK1T49r5rzjlv8h6bnb5b6y25yg3vX23m6eJ7UjeKHzxy06I2+1MWH11y0MpRN3Ls/3FzRq/slU4+Gfnh1KaBL/650KfLyFM/P4x2IXvbYj/qHIp4K87LQzkrHt524E2uu+XuZopRfNaLNYcLpruyL1TdWOdL38q4qmfc5bk/J3h6L36yY11z9WlesF/zSoGRyya9WGRt6lIL4h+JHfHeqqIrgmqmP/Ek5uAj26u+DrEvaoxjb6LOHLEhXo9BdeePybKzeOVIOaMU6t8mYbaqmRc/PfQ0yuJueeYMf/g00uod0baP6BPUsGKCDxtCtnv1rfTCGxMTH4jQ6ED1Rd+vjlr+udGzra3nVUjfNOcfnRtHTvZi0ryJCUsWnfAjy4Xpk0eHidi9QsqcVWNuK92tTK/HrYqVDQzKVKVNoQd/3xpcZX+KQlUjnm/0MWThf+JV7vAxbewX+SKdrt2l87wx3W4+apGgV4ODs6v2nzr98J3e3WpFGxfnbc/ct+tEDfXj8e0f5yOM/VawRbQGdZNXn/zXPzF+GVFweeY/piRLFHRqyZAzEzfvLF93V5mbkW5EjzM+dKXxM5f/0fnTnctTUswonzkwIFPf5glLR8xULXGrHulb7IyW+lmiu4tet+6y9kL+q3+szfu8YaIN3YMO/t4nQs5TryelXD3p6Lp1b4On1Lm2Ku3KydtvbcmSpsLmiFlmDa+Zu++IYc/T/fNoQr0bS1Y+GrJ2xdugMeU/hkt/eF2xj5Ny/5gWMlbblqXSP+r6dsn6ASVq/9z4yo9I1zMMWBJj/r0Po3MNrLBi+ZqWYzJcuF1wSZ2eEcO2H960cZiB5aJnq7W98Kea94o/f9B4SJ/MO5/GefTxfvoSH9fmKPQ934Vu+c9mOTvyTNoOgbPqR+gco+X9klsmdov59vrMCuMK7s00o1yDRZFXHbhxu2GmgfOSH4iYZura3bXmJPkzRpjuw1NPmr19/pQPm/r+VP1ZnfL1vz45sPBE0XilM6+dl3NXj4N1iscJdz969slzHi3/83vVun/fmD5gZojm8yZtDTizZlDQmQKbSvXZd6fsw9W5ztU92HTD2sT9/0nS7fuzJ+k6Nv5lRPwQp1MuGhEiZMJDtWKvDbowNuiXJCMPfSofM0vUA8uWhj0yJPLAjfdmRUvapUzs5ElLZV8XFHFdtfFP+p4+PzdigmrByTpFqng/fEBAwMH7x6fPnhjQsUu5nncb1f7eZt7gFKG+lCubP3TTyX9crR9j1sLfq/6W4UilDheG/Z1r/Z9h7s5vkjXz/MaL1od/WP/Vn3/tzdFg/fh234Ob/DHv9rAFd8PuDLdtQ5FqTWvc+lb8zY0t6fP+1Khk1G0f/qmVKln1Nqfb/9zmTMdKCZNdindw+pNBp4JSnsk3IlWU8AvvZLqS+Xrd9alrdas7qdW8GLmXTzmYaNviv3NOyHuxYOCLtGXOTEoYeU+Z04+D8i5pUHDWz8eb3GwavO1hl04lj6z/9jRWy2L7msTMc/v26IwRAuMnC3jR8HaDLzu3Fuix9PDHL4VT7l2V+OG5aZFLhDn+PVzfmSH2JEt1tEb8EZmrf+s8pXT+5r3nVX28/MC8lD3nPqi8O/2V6eHmHTkS9/bFzhXC3sszaGqOL33D9YyRNdPJ5M2TnLk+r3Wvj9cP5o1bZeXfdfvue3867aS1bV9PKnptbc+JqyPdKxZq2phJf8QtuvbewkgV/44fPUa+JaHyzm2zZ8SlBIlWRPhjeL4YF2O06fapQs/d5Qr+CJj2R5h4Kb+snHr690U1l5dZVGx1r3XxZw6dknta7P25Z5+4VfrXy0tnro/Ut0q5uEM7bo9zvP+Wo2WCkyR/tOJYikpfM9xYm/XP9y9aFJnf7ky35w8LVKq+KlvYEbnfjFpdqUebhPuq9Px9cdmrUZtXGTtv6M7fb+VMPyRd2vU9pgzvtGJXlgy5Nsa+eKpaq2sh42Rv8TXRlVLtn1SJN79D1f4t528NNbpFwsED+/7cfFPWaQMDlvauXzzH4uiZLydO9/LtnUUrQi9f0OzI8J+Cm5xNWabn9/RJYhaJl6derC4n29zPkKHE8J7LZv2z6dy9bJ0P3roV3ONuh2zjml+IN/d1kYPdFpYpW2zrmLjZerdLlC3k27KHWtZsv/ri20TLk9T+NVPLbFffts0T9d3t/kn63y3z9mCIN40n9Ru8bd/TvQuenmg4fdqx+xFmZ780Os7txU37nXwcdd7ziKFzdy22bueDxstbLZ/e+NOscEnmlQ8d7c+CPdZcb7Dn4b2XX3tfGj72Xs65WcZfvjpr5LxKQ0M12Be/3LXOyQuETHIl5e56NTs9az0gRo3tc5bHK3HobcqOI5PeTZ4tVXBw9N5XekcMdWnvhmiNOr2Kc7P/tra5S7Q5MSXH7en3Vl39FDlviTlLS4Za8envMCnCfopVr9CsRaMSbZrz57GM84Z9n9U5yu2XMxq0CpUzXvEMM1ZebTgmQ87MS8s+KpDi78LVb8YZMaLyu3cXil5sdjJk38vbiqxolSzg1127Y04f0SXKX+9aFq+3umqVBfveRitzN0mEaFO3V80SuUKGffNyNOv7+4buV79NjDywT+Ek6zNcKJcpVKOyBR7Mbx5cfGiMrz22N8pzOsqJlo+/n524v02I+hOyFDx3NDBavPwjovxUbXnDgn8Vrz2hdYNnf1VNMHnRruA+aRMOPTRtca7zJXoUGXRrZrbaj/o1Pnk3ctZ3EZsNGJe/daiH8TsmXVL5aJ8NEXPHLHlqUZRD9wqfrNL34Zzma9N2u/wkXKIC4UZ0Xly45vjPJassjpao6f6VOSsmDjmkZu1aD46Nbr6nVZ/IhyJMD1tgcOiui/9KmTbRtNzPzm7MnOJ2vByhLt9fXqF7jWUTAz5tLrah6aofiVuf/ilb7za3QryN/fuzPxNHaNa06tt5X7Y2LZu6d6mfGozPEmXusFB3PvyxJObGCAvqdg41pFf9fF2HL6v7OlVQojJNXs799CSwU9vNTys2XPpg/Om6P4/42vDorUfjY6xaHdTpVZpdF59m6VD7bspbXU8v7PI2X/T0MQ4GXyxTY9LebzvLbSn/LXTqiaUOLMnVse7UGbUatZkbd1Ldm5s+Rfi8u2qBsyke7e94MGOmd2e3BM+rs/v6qDjxQhVLMW9m2HezqwTF7Zwiza+NCi74nPH9zeX31xSKGHPc+UYNh+8t1Kpfyn8uXtxXIN3reVMXtptYJleDZaV/hAgIWNY3+JfaPRZ9KfisVqptSZfUnBp2ye4eJx422VHyYN170e4vzhcmbb8Xa+p8ahXc8Ui5LRlDrI5/ME6pLyl+fj93+KQU15PH39ql0b1kQQUuZAk9pd7cA+2HrOrS9mrykZk2bRkd+czV7vOiRNoSLsbFnSOaPI6dvX3xSAmCw1WM9+TH3h91v+eYniZ4QrZitRdnCNsvb7aSl56nzfq8Y/9Yg/M/rzSwUI/7p7p1iT0/7aQ5J1ZFiZhwfN8jvWJ1SXcy3fEyUx+nzzK566o/49/L8rRfwJq/2tfef37s9BX93i9J+jHW7wMWpC38rFr3tF/uhi/ddEbU4n0fBvZr8Hr6qV6/LUpzNbBvy0nze5SMcHBP3sL9r1yuHWZ/lih1noSbdWJX9/G1L95bMj0w94YJPxXYlmPwnlxvUo0rM+3TmRWlJ4acs259r+UTi67O0rtsle7Hz14OF3/wktGHlyz5frFwud0t9xVc2bbRg9jzCwaPSl6lX5hmixe+vJG/VPnR8XeF3Dp506zidZdXvnxtX9hjgxNvbBA86tKCCVkLnYs17nqJQefvTHp4ItKDWLNfdx+aPHyn5uHrfF3e8HXiIZGKBN2onbXv0LNnng9f2mbf5puvSjffuidCrDUXbue63yMg1uyc+WO+/DqxxPvD40Km37iwbMVX4QY+/KlLYL71eTLXqtnsU5Z6w4LCvQpZa9HuPr3/rvilYOckQ8s23H5uQILqHeq/TlIt1ZCMvVOn/VDt5snFrSv8HC1B1b/ztz55KumFAuNTDJ2w9J+U6XeEmL7j7ouJXXrPvxZrzfI8I0otuNPtdKQvZe5+K5G/e5MKH6NPbJmlQdxz7f5e/i7thpnjvqyId6f12xEtWq/YPqxbgbNJ9tXZPW94kX4pc9yJMGbTh2qrX5R/UfRzqr9ejziUte27j5+6PzsUNvW71dMznnjxIUfEn0c2evu8X7viJyaUrtS1eqYw68evjhuvfeNkYxKM3nm9x4b6KW6FLxElctafju6ZsqJ3so2FX8Z4WP7I5dU3yqfMXuhT7mwnm68cUPfRwEg/P3n3Zm2HpF+yPQtbJtzpSG9qbvpe/8yTzs/Wz35W52DsixfjBR06N+fe9Y0F95z/1uvh454vKs5tdOxQ2eH1MzUPyLtv86c7uQNLb64ZlDvNnwXb5p5SIkmERDti5U8fOW3GEAurJUm26cHUsfdXrn6faPKTDpFPRpj5T7rnY6/P3HP8Xfg+qTNUr7r9x4Y5P50YdOP0zc87Wz350f6PMJsTlB9UbmDaJqfKl4iX8OKz9Z1zFrxXoNGD+OOW3q49p26z6SHih//9ysyEa/vXStGqae2KhVpPbJLojzQzXu1uuu1mwjK9tqarlX/76afVe1RqlvdLr6nFT4coVul0uS0317SpsLXmj7EpEjaqOvPhgNo/KiV/O2LpnScrWncate/Y6VWbfnlXd9v+0CEXvtoXqUOlpglzXYiVuPLl6PtaRx3ZMkb4wyNjVrhaO+WT04cuDNh7uN+PovGGJ7sXMWb5yGc3Jiodp9yttslW3C9WqteleSfDnKr3tX7fNaMC9j+O0znegCXFy8zvOXVl7kQNfsuX4PnENcmy5N5yNn+j/FOmt56Z7uSoqDPGzH/1y+GoQ68V7hR15OzAN5t2No1f6vP4CC3qJztRJMq+PDuTHylUIPPAWA1uZd4WJ8FPr8LdTz4oS4/EsTM/OR+v8Y13EZ6eCbXn1LtLfTcN/fzLo4TdWjxptLBy0aStysTNvyV1/AgFng6pW+rnR9PqJnpcaXK8HBu/rpq3eVbl9zkCN8XYmvhEr5Obps+K8PPvUfKcLd//VoYfJwadDjGhQotRxxY96hLcMef0Wn/vy1m/avD1ZMWjpygRMmGG8403tB1fs8eeVnszTc6U4+a3JW367Wt5qdT79rXGxWn5T76oyzvPqxA7fOz5i1rsmrz79uKsWTM0TVlkeJ67tfaEnvIy7ZecDbLVTrf82bFmfZP8MrbP7W83c6XpkzVeuqG95229tSNG0gYRa9QOda7xgYA+7WocDRvjQfJvmx5nv1p50+ZHmzpNPr5p/YUKSxo+/P7q+OsPEZLMWncuV1BQxiWtEsws1Dt4Z/ZBy2Y9mR/5WrY+44tl+jx3YsG9i4516FL4xuGRSQI2l051/dCrEfPy/tPnxJeIq+NE//BHlbAXct7aUXLiwKpb01Z7k7D+4Y7h1h4c2S9Ki5ihd6/a8un4nmPx21bbf3Dd8CnF5+f+M8+hnKOqHold//KDUTeGRPr1Tf3bF7MU2JaqbduAAr33vVl148vsBVsrr2t292uIssG37g1vdabL2GSl22V72LvAzVQBDbZnjBjideV824dO69Cl+/jIf2RtH3JHjdoteybbPyFRryWVVj7YfqBs5kS/fl69JTj23HXvfjnbI/vfJ6sUaXJ2ULsDM1J8HL36x7sYx8NtnV/58YZed+pvCkr+9OaNJskGB12I8m//fwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/O/Y/a72kU7XZ33J+VvlSJk3X/ml7u7tHZ4/DTrZNzjxhDjRjtYLKr0uQerdWTu3vpGqRtX5FVLu6XT6SpQqEwdHfrYleUDc7xVnVzh0+PHQSet6PnhwM3/cF4XC19qYadb7iaUaNqzedO7txZNDJy37+87+R5e3L3U88YhZ91YnPLej9dp6p4q3HFInxPzCg65USX7j+pUvHVqmerrszc5Tgy/9d67AgICAuP/uagAAAOB/xtct1/tFLBc99OVKo2Plzxny7n97eIj/5IEB4QLiBoQOiHfl+rKuj+60Td9+dcXpPesUqXZkYojHFVrEurxy+I1anfeUujwt0fdSO0Ll/pePAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/F8Ub1+p2xWO3nlSNvNPt6pUiJG57u7tHZ4/DTq5cUfPTjcafQsYlHPmuEOhB0yvdbB1vdQhXs5ZMKnP6TyLhyXq+Wzj+uLdY2z9mqHOmtH3J4SP0bXMn6HaLY5x/ae+I/sMSfihxZgnTVqOO7Iw67hu595MD1uvU5GNH3/9Lf/NrZ/fFUzTr0bECCU6Rarzoe69am/rLOv5qv2wjINTfy05rGS+/84VGBAQEDbw390NAAAA/K9IHmV1q1VRE03oVDVVjXwFC9f+bw8P9588MCBcQNjA5AELQ6+KE+50h1JpExQY1z/7jXzvI0yIuyfLuTtza/58PFSfrCN+nt177cjjuar0n9dy0tEC79O1nTzx8+ZohdPUndx+zb1SU4o83fxb3U155m6ZlKlPr80fNue/vCX+7l1HK8zs0GHizlsVCwxvl2/I9WfNyjbIdvpL3sydc64aF1R3Y8/v98aFTVY8zuzklYdO3t2gR/kIXw8fjVPh49JU3YpXSjl29I9Tic5MXlrit18unTpRYcj6kZVDHrty7cqs/re65qgeo/eRaG0yHz58sfD0Kd/DLxx+8EebJbkOvouysOr4Y7vGtVhXuXiymT+vr1ss8skKr/PnPXGx9Z1Wj7oERVlcPtLQwflqbX6xv1m6FukSF5je8UT4HpX33hg1Onr0CxvrnU7XcP3YDhvWbIpWrM6Ygal+m7jnX74+AAAA+H+lyYyXZZ+2G1Ws1f5ZEeee69L4v/0/4n/ywIBoAWEDowRUi3d3ZGCdGrM/9yoQp3alX3PHHDbv7MABJVN8frfiW0DL9SWGhutyeuPueneKd1y852LMIjMXVVi9rFbTvhXijCrd4vqiRtG7XN4+I9TdimMvxSyRcPM/VQ8vG7ew7aDobU7VbBOtXq8sRz5mnDk6dZ4aU6OcKt65XPumzQf8y2sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+D/y26Uzz4QH9Iv//n8olrbt7e4fnT4NONmlzK96aLR+Lld63bfa9qlMy3FpZf0+caIGz5x09uC9/8z/r/kj4eP/ozTUGZ63dssAvDVa0KJojQ+jwYyf3X1p69OItj+eX2xqn/dKtSa+POzL/n7N/FSs09mnnp7sLrN6WLcXnEulXNawcYXKXkv/8VTLs2rXvRo6Z+zo4esgw7/bXLpwk3X/nCgwICIj7L+4FAAAA/pe8zHxtS8UtGWt0nlllTdRqccv9t4eH+E8eGBAuIG5AwoAqkY4nnhJrzNLkD39Uz34v0ou7BWsv7b8tydQtrSa9uNNlwLYwAc3u3T4TsuvSaM1fPQyd63GeSeczJfnyx9MoBYfHOFPuZL5WDU+Um3l2eNvnAReLN2q9d0SjSftWRi//fcn6LcWXlu/9I17piv1ftwxXqn9wnAUVF7zcM6XCtVhrxmdbMXPB/rhF025+OHbuu2btXwx5ODlkjyZv+7YrNXfxrxFnvAkbcvz8/Z1yvStXtf6VycOu9imSN0adw6vbTl798HPVELO2hAhsOnDItpclslZtsrpximvjWk682314kf0L4tTdGX/dqw0ProfdWDTawHe1M7a51TRusfNpT96clfhfvg4AAAD4v+Lsveq/Fzgy51KxNpG3bKiXZNJ/+3/o/+SBAdECwga2Dyix5K8qG7YebnOg74chMcfuKpHuztKG3xdMHXA5Rov9DYaXqRhrToLU25dFiD7uw7gqn+4s3xRrbq/m17usa5ltXYZIm94kPV2rXKIwTXMfKBj8a696J+/1GR/x9fqEvRecyh9q86PeX1tfzl4o1ZqGN3duXHi4W5QIr+q8u3S9edrvg1qcbZc9S8FqPZOdG9/5VfSdGStdP9czy4OnLRYUjXUixe/lLib+dX26DjU23Qlc3nHTlPOBoeod/j400bWJRz6EDl2ldeMh+cJ0rNWofY0LyQo9vr+s3u2ndwrPaDit7JDhs6NcThj+99PfFg/ZGmF7ljk7vh982qXjzlxxppUYteqn2el7hYwTMcqZ0+ETtu93PnvmPJGabiswdvW6wyuq5ooSt1i3ulf2fA73aEi8Fe2STsvdffetlqPe7bma8uXwsqPL72ubLcqG1W0u/vn+4MkiPR6+jdI2cvkpIXd9Hfgg0reUGwOPLio+osXBsE2qFYjRK9qVZctzTvu4oFvPJPda7EiwYdWuan3nNXweODZ6iAiNX695OyPi6BXHB38/Pyd9rLHDFz6fUmhLxOdtpo0p0eDXvTVmlzzyIlmfNNW7jzg6I6hWtBlvg/9oWaXCzYap+8z/rd7cLm/blu908f6u2eMGHS6Ztu8/E+MeL93qcttBGS6E/+fRkdnnTnYq2zVftlZJMkY73XHhhmQVj7zsXi1HkTllO0zsHBh39bA5eytm7dgqWbmlJ9fenPTozuGP7Wd/n/klbNQjwX+VnbnrbahE/VpEy350x6m8zc5XjXXt0NdiAQnCzM6YruOneh2Df7uw8lX7Z5HLhwzucih/UJ+/X29Je2Tnt8u/fplUvtClJfVTvYqULP2NmZES3ezxMGSWQlen3GlwrkBwvVOnF8w4XCvh5RDbEhzsML5ntoAqa1NObpiuR+fLtRKFDjpeKLhch67vq+bLeuXBu5QDJofsGDPnyshvxq3rfODvEnXSX8i57H3NhjHuDz50vejt92/2fJxd/m2hkwdPf+/Zc3LtPzJFLNcue7NbY0I3fxmh37VmP3/ZO+zCgnDt3yY5cXLltOI1G0WpcrXzxxLv9iQ9vqddnssd5r9aXSb21lRvE8W9tDV9nxiDPga1TnFmTKygvTmn/Kh4/OfAtRF/ixql6/QUUSst21GsX93hD5eVa7Cq6dyM2boETC4e4WuC7DGnb0v/4tnve5bd/Slk3Jk5YlW8nX5opy2/dc0ba+fkt8fGhCi0s2/oVncqtmsauO5w48XVlm1In3FSq06fhnyrEvJx1RgBEct2HTX885MOj0tme/svfxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6PVRv+ME2o76FzPJgfvsj95vM/1d29vcPzp0EnFxQuN+zD2z/7f2hbqVvmWmvSJDn2S56wL9oO3rT0eMavRzaf/+Nixy+jQk2/0qxcwsx5R+68PmJDlYxXI1auEZB4ar4ioaqsPjDs6rU5tf7ZUXvS+S2fXhfs86R8von5hlb5sjvfwf6pN0Wfny3WpIDwJ99GW5t0XXCecmVjRSvfqcm1NqEG/3euwICAgLCB/+5uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P9rWq39Girl2IjHSnYf/XXwnIXd6+7e3uH506CT8W8uPVCzWaqD6Zc9vbwjQd2Gx4dOOzZwT76au35Uu5HtVeDU0nP71902vejCeYUq9anZIm2Yhc+yx4nVo/SzuztmbUuVI82psz2/pZ7at2eh+90T5p66P8/0AkUr3ds0tdWY6zsnv2p+Ls39Ggs75m4yYFKbUUXfZdiZNl3tXLWG9+16ekCq/84VGBAQEPffXQ0AAAD8z1i5O3O/DkWmBMUvNn139ATbU/+3h4f4Tx4YEC4gbkCYgKh/L2k6u1SdX1vOS/c2xpuEL387/SRoy5ghT9K9/2NA8nLv1jXNeC3K/Xfvh/bu0n34pfnnsvzLxwIAAAD+H2ZHTRFraYvPOQfv/zPShYoX3/23/wf+Jw8MiBYQNjBFwN1eRd4sqRg04eOwIWWGD51wfG+t+GM7Dy3Wesi9k00LHHj1dHT6+hOyXF2T5Je4yUu3fzNlQr9Od5IMnD2jQcLZseYnXLq5cOJQWSZu2Fu9R4hrr8vWGhe+5Jzgqd82xD7Xq1rm9n3/eZL+Qa9zP7rs27E18t02gX0TrQn1n7f3Wrelye+d2kXpmPBNnWkJ4idunHTpxKdbE1z6ZdfofsN2px5ZsM/wTQOH98k6+XGB7nXm5M9eoVn0wmGuz5uYI3qOH/3m5ByQuGPcQie/Pz8zrP/NGBmO/ppkeI6g9X/3brlkfXDA8C3N6qQNHJ8mSaeefca0LNO75IYSI360KFx/acoJQ8utDH0l/j+vTt2eMqVnxjSnQzdKuSxlwyRfvicOHTCqdOKtc4p36Bfpxrk7e0I2u/V6S4KGE9J1T/wvXiEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP+PHTgQAAAAAADyf22EqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqKuzAgQAAAAAAkP9rI1RVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVhv25DqyoDOIA/5947vXo3u7MP3goqg1TW20KiKKhBNSJyFQa9gGiZNVA/iH0wCNyGtoVfwggCqRZBL4sojNKMRKj1oWD1ySjozS8JEQxpo/KDse2ceXe8p80jK6jfDy7PfZ5z7v88b/fcewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIISws1SbLz3ZvH++68PbP+zaN7bzj0NbeNw9efvT5A53retecOHnvrpHhQ+8Mtn6z99bbhv64e/THw0dOzRq8Y6poi6vlEKKxKIRdN68f7x/+YtlEWxRCKEbVnhBao6XDrVEqof3PEMKj0/2cefDDsdWPTZS9exbOaD8vFZIeV6gUk/5Mqc7sL/8t5XifFVYf7j/2auf7+zs7xo9v339jz+lToolzDsb7KYQlG9KfLzTIfWRjd1vb5k1PvnLl0M/rf13WPfTinWtX3f/A282L1r30zI6917488P19D1/x3uKmEMKi+DUh2a215OJxeU8IYXFd/g2zjOuyOY7/6oz6JXG5IC4rs+Qkx5en6um5SX+JE02psmWW652rRmvWSFZ/z1bzPOXOlpeMM7mNfRSXbWeZX0xeUShEoTR9uS3R6T0S6tYtCtHkWpan64XJeqGuv00z+x+l6oVUvdiUGtfkdeONVoyime3Jean2ZB5Kcfvy+nt9A2sz2i+Iy3L8Rf09qYf0mymVM95Mj2tS0q/Rv+nLP6FQdw9q1D698PFiVOK2SrT0jM+caiA5VrqmeV9/tdRVzehH9G4U50e58gsLfvvkoY5L22pZ+RsKcX4hV/71D/Y/9cSXO1dk5j+b5Bdz5f/01mvHumsDF2XOz2gyP6Vc+Suvu/jp8kittiorfzDJL+fKX/HL6yc+Huk7mtn/9mR+FuXK3zLa8vjWwW1fZ+aHJH9xrvxb9hzv7njju+cy848k81PJlX9gX9cPC9d8+kF7Vv5XSX5Lrvyr+lae7NzdeVPm/uxI5qeaK79617aN324u9mXdO6OeOf7CzvWHGOB/5vz4P9ZAXM/7nHqu6p4XXqhGU//5muPXfD6rTVxnyTzmAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8O/4KwAA//9pGNuX") [ 75.297274][ T5328] syz.0.0 (5328) used greatest stack depth: 19288 bytes left [ 74.753004][ T5312] Bluetooth: hci0: command tx timeout [ 74.996554][ T5328] loop0: detected capacity change from 0 to 32768 [ 75.094387][ T5328] bcachefs (loop0): starting version 1.7: mi_btree_bitmap opts=errors=continue,metadata_checksum=none,data_checksum=none,compression=lz4,background_compression=lz4,str_hash=crc64,grpquota,nojournal_transaction_names [ 75.104173][ T5328] bcachefs (loop0): recovering from clean shutdown, journal seq 13 [ 75.107112][ T5328] bcachefs (loop0): Version upgrade required: [ 75.107112][ T5328] Version upgrade from 0.32: (unknown version) to 1.7: mi_btree_bitmap incomplete [ 75.107112][ T5328] Doing incompatible version upgrade from 0.32: (unknown version) to 1.25: extent_flags [ 75.107112][ T5328] running recovery passes: check_allocations,check_extents_to_backpointers,check_snapshots,check_subvols,check_inodes,check_dirents,set_fs_needs_rebalance [ 75.128822][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree extents level 0/0 [ 75.128836][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 16 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0 [ 75.128842][ T5328] node offset 8/16 bset u64s 51: checksum error, type chacha20_poly1305_128: got cb58a9d149164523df4fa4c316b45b42 should be 37f1d6087d67d21bebd469bc807a31f8, fixing [ 75.145456][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node at btree extents level 0/0 [ 75.145470][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 16 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0 [ 75.145478][ T5328] node offset 8/16 bset u64s 51 bset byte offset 304: key extends past end of bset, fixing [ 75.161686][ T5328] bcachefs (loop0): btree_node_read_work: rewriting btree node at due to error [ 75.161686][ T5328] btree=extents level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 16 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0 [ 75.173076][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree inodes level 0/0 [ 75.173091][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 75.173099][ T5328] node offset 0/24 bset u64s 0: checksum error, type chacha20_poly1305_128: got 86b6d06687008ae27463fcb251774b21 should be 86b6d06687007d0d0000000000004b21, fixing [ 75.190156][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree inodes level 0/0 [ 75.190171][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 75.190179][ T5328] node offset 8/24 bset u64s 29: checksum error, type chacha20_poly1305_128: got 69b6b613a6c27f97d0f163c64c7ac0e3 should be ef30dab84eb82d57729a51b00f54184b, fixing [ 75.207671][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree inodes level 0/0 [ 75.207686][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 75.207695][ T5328] node offset 16/24 bset u64s 110: checksum error, type chacha20_poly1305_128: got 74465b01ef961ba16cfc11c13d095ba8 should be d1e256903dc89dd6436b0db8b45d2093, fixing [ 75.224764][ T5328] bcachefs (loop0): btree_node_read_work: rewriting btree node at due to error [ 75.224764][ T5328] btree=inodes level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 75.234944][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree dirents level 0/0 [ 75.234958][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 267fcf747c875937 written 24 min_key POS_MIN durability: 1 ptr: 0:41:0 gen 0 [ 75.234967][ T5328] node offset 16/24 bset u64s 36: checksum error, type chacha20_poly1305_128: got 467b9ffb73039bcd203c7d11f967b656 should be 9c0f2415a667f93682c3af0cd44ed5f4, fixing [ 75.252505][ T5328] bcachefs (loop0): invalid bkey in btree_node btree=dirents level=0: u64s 7 type dirent 4096:5682031293254759865:U32_MAX len 0 ver 0: -> 4098 type (bad d_type) [ 75.252522][ T5328] dirent has stray data after name's NUL, deleting [ 75.263129][ T5328] bcachefs (loop0): btree_node_read_work: rewriting btree node at due to error [ 75.263129][ T5328] btree=dirents level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 267fcf747c875937 written 24 min_key POS_MIN durability: 1 ptr: 0:41:0 gen 0 [ 75.276949][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree alloc level 0/0 [ 75.276964][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1818ce08861e3527 written 40 min_key POS_MIN durability: 1 ptr: 0:26:0 gen 0 [ 75.276972][ T5328] node offset 0/40 bset u64s 0: checksum error, type chacha20_poly1305_128: got fa3f7556182bb2df66b9ce42536cc45e should be a1c0cae4d1c6eac9087fba7ada6f601b, fixing [ 75.293677][ T5328] bcachefs (loop0): running explicit recovery pass check_topology (2), currently at recovery_pass_empty (0) [ 75.298137][ T5328] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree alloc level 0/0 [ 75.298153][ T5328] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1818ce08861e3527 written 40 min_key POS_MIN durability: 1 ptr: 0:26:0 gen 0 [ 75.298159][ T5328] node offset 0/40: incorrect min_key: got 0:1014560941568:0 should be POS_MIN, btree topology error: [ 75.313457][ T5328] bcachefs (loop0): flagging btree alloc lost data [ 75.316017][ T5328] bcachefs (loop0): running explicit recovery pass check_lrus (14), currently at recovery_pass_empty (0) [ 75.321737][ T5328] bcachefs (loop0): running explicit recovery pass check_backpointers_to_extents (16), currently at recovery_pass_empty (0) [ 75.326707][ T5328] bcachefs (loop0): running explicit recovery pass check_alloc_info (13), currently at recovery_pass_empty (0) [ 75.333991][ T5328] bcachefs (loop0): error reading btree root btree=alloc level=0: btree_node_read_error, fixing [ 75.344980][ T5328] bcachefs (loop0): check_topology... done [ 75.348215][ T5328] bcachefs (loop0): accounting_read... done [ 75.351645][ T5328] bcachefs (loop0): alloc_read... done [ 75.353880][ T5328] bcachefs (loop0): snapshots_read... done [ 75.356447][ T5328] bcachefs (loop0): check_allocations... [ 75.359399][ T5328] bcachefs (loop0): bucket 0:34 data type user ptr gen 0 missing in alloc btree [ 75.359417][ T5328] while marking u64s 8 type extent 4099:8:U32_MAX len 8 ver 1: durability: 1 crc: c_size 8 size 8 offset 0 nonce 0 csum chacha20_poly1305_80 e371:ac69b75b10c57971 compress incompressible ptr: 0:34:0 gen 0, fixing [ 75.375692][ T5328] bcachefs (loop0): bucket 0:34 gen 0 data type user: ptr gen 133 too stale [ 75.375706][ T5328] while marking u64s 8 type extent 1073741825:24:U32_MAX len 24 ver 2: durability: 1 crc: c_size 8 size 24 offset 0 nonce 0 csum chacha20_poly1305_80 5c1d:75853c64f7009f9d compress lz4 ptr: 0:34:8 gen 133 stale, fixing [ 75.388662][ T5328] bcachefs (loop0): bucket 0:34 data type user stale dirty ptr: 133 < 0 [ 75.388676][ T5328] while marking u64s 8 type extent 1073741825:24:U32_MAX len 24 ver 2: durability: 1 crc: c_size 8 size 24 offset 0 nonce 0 csum chacha20_poly1305_80 5c1d:75853c64f7009f9d compress lz4 ptr: 0:34:8 gen 133 stale, fixing [ 75.405155][ T5328] bcachefs (loop0): bucket 0:27 data type btree ptr gen 0 missing in alloc btree [ 75.405172][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 16 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0, fixing [ 75.415998][ T5328] bcachefs (loop0): bucket 0:38 data type btree ptr gen 0 missing in alloc btree [ 75.416013][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0, fixing [ 75.426618][ T5328] bcachefs (loop0): bucket 0:41 data type btree ptr gen 0 missing in alloc btree [ 75.426633][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 267fcf747c875937 written 24 min_key POS_MIN durability: 1 ptr: 0:41:0 gen 0, fixing [ 75.437197][ T5328] bcachefs (loop0): bucket 0:31 data type btree ptr gen 0 missing in alloc btree [ 75.437212][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1b881868e2a6abe1 written 16 min_key POS_MIN durability: 1 ptr: 0:31:0 gen 0, fixing [ 75.450022][ T5328] bcachefs (loop0): bucket 0:35 data type btree ptr gen 0 missing in alloc btree [ 75.450035][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d682cebdf2a7eb26 written 16 min_key POS_MIN durability: 1 ptr: 0:35:0 gen 0, fixing [ 75.462846][ T5328] bcachefs (loop0): bucket 0:32 data type btree ptr gen 0 missing in alloc btree [ 75.462861][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0, fixing [ 75.473917][ T5328] bcachefs (loop0): bucket 0:28 data type btree ptr gen 0 missing in alloc btree [ 75.473932][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 93dda84068e88b3f written 16 min_key POS_MIN durability: 1 ptr: 0:28:0 gen 0, fixing [ 75.484533][ T5328] bcachefs (loop0): bucket 0:29 data type btree ptr gen 0 missing in alloc btree [ 75.484548][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq b6c44d07df4e9bb7 written 48 min_key POS_MIN durability: 1 ptr: 0:29:0 gen 0, fixing [ 75.494692][ T5328] bcachefs (loop0): bucket 0:36 data type btree ptr gen 0 missing in alloc btree [ 75.494708][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 3b468546fb27822d written 24 min_key POS_MIN durability: 1 ptr: 0:36:0 gen 0, fixing [ 75.505743][ T5328] bcachefs (loop0): bucket 0:40 data type btree ptr gen 0 missing in alloc btree [ 75.505758][ T5328] while marking u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 82036bda63714c10 written 8 min_key POS_MIN durability: 1 ptr: 0:40:0 gen 0, fixing [ 75.522281][ T5328] done [ 75.525218][ T5328] bcachefs (loop0): going read-write [ 75.536156][ T5328] bcachefs (loop0): journal_replay... done [ 75.581334][ T5328] bcachefs (loop0): check_alloc_info... [ 75.583052][ T5328] bcachefs (loop0): hole in alloc btree missing in freespace btree [ 75.583069][ T5328] device 0 buckets 26-27, fixing [ 75.593829][ T5328] done [ 75.596509][ T5328] bcachefs (loop0): check_lrus... [ 75.597139][ T5328] bcachefs (loop0): incorrect lru entry: lru fragmentation time 134217728 [ 75.597148][ T5328] u64s 5 type set 18446462598867058688:34:0 len 0 ver 0 [ 75.597152][ T5328] for u64s 13 type alloc_v4 0:34:0 len 0 ver 0: [ 75.597155][ T5328] gen 0 oldest_gen 0 data_type user [ 75.597159][ T5328] journal_seq_nonempty 0 [ 75.597162][ T5328] journal_seq_empty 0 [ 75.597166][ T5328] need_discard 0 [ 75.597169][ T5328] need_inc_gen 0 [ 75.597172][ T5328] dirty_sectors 8 [ 75.597176][ T5328] stripe_sectors 0 [ 75.597179][ T5328] cached_sectors 0 [ 75.597182][ T5328] stripe 0 [ 75.597186][ T5328] stripe_redundancy 0 [ 75.597189][ T5328] io_time[READ] 0 [ 75.597192][ T5328] io_time[WRITE] 0 [ 75.597196][ T5328] fragmentation 67108864 [ 75.597199][ T5328] bp_start 8 [ 75.597202][ T5328] , fixing [ 75.637393][ T5328] done [ 75.641689][ T5328] bcachefs (loop0): check_backpointers_to_extents... done [ 75.646374][ T5328] bcachefs (loop0): check_extents_to_backpointers... [ 75.648076][ T5328] bcachefs (loop0): scanning for missing backpointers in 3/128 buckets [ 75.655739][ T5328] done [ 75.658040][ T5328] bcachefs (loop0): check_snapshots... [ 75.658597][ T5328] bcachefs (loop0): snapshot points to missing/incorrect tree: [ 75.658608][ T5328] u64s 8 type snapshot 0:4294967295:0 len 0 ver 0: is_subvol 1 deleted 0 parent 0 children 0 0 subvol 1 tree 0, fixing [ 75.673283][ T5328] bcachefs (loop0): snapshot points to missing/incorrect tree: [ 75.673305][ T5328] u64s 8 type snapshot 0:4294967295:0 len 0 ver 0: is_subvol 1 deleted 0 parent 0 children 0 0 subvol 1 tree 0, fixing [ 75.692977][ T5328] done [ 75.695710][ T5328] bcachefs (loop0): check_subvols... done [ 75.699277][ T5328] bcachefs (loop0): check_inodes... [ 75.700771][ T5328] bcachefs (loop0): inode points to missing dirent [ 75.700783][ T5328] inum: 4098:4294967295 [ 75.700788][ T5328] mode=40755 [ 75.700793][ T5328] flags=(15300000) [ 75.700796][ T5328] journal_seq=4 [ 75.700800][ T5328] hash_seed=a019f248330e05df [ 75.700803][ T5328] hash_type=siphash [ 75.700807][ T5328] bi_size=0 [ 75.700810][ T5328] bi_sectors=0 [ 75.700815][ T5328] bi_version=0 [ 75.700820][ T5328] bi_atime=1987793307 [ 75.700825][ T5328] bi_ctime=1997793410 [ 75.700829][ T5328] bi_mtime=1997793410 [ 75.700835][ T5328] bi_otime=1987793307 [ 75.700839][ T5328] bi_uid=0 [ 75.700844][ T5328] bi_gid=0 [ 75.700849][ T5328] bi_nlink=0 [ 75.700854][ T5328] bi_generation=0 [ 75.700859][ T5328] bi_dev=0 [ 75.700863][ T5328] bi_data_checksum=0 [ 75.700868][ T5328] bi_compression=0 [ 75.700873][ T5328] bi_project=0 [ 75.700878][ T5328] bi_background_compression=0 [ 75.700884][ T5328] bi_data_replicas=0 [ 75.700889][ T5328] bi_promote_target=0 [ 75.700894][ T5328] bi_foreground_target=0 [ 75.700899][ T5328] bi_background_target=0 [ 75.700904][ T5328] bi_erasure_code=0 [ 75.700910][ T5328] bi_fields_set=0 [ 75.700915][ T5328] bi_dir=4096 [ 75.700920][ T5328] bi_dir_offset=5682031293254759865 [ 75.700925][ T5328] bi_subvol=0 [ 75.700930][ T5328] bi_parent_subvol=0 [ 75.700936][ T5328] bi_nocow=0 [ 75.700941][ T5328] bi_depth=0 [ 75.700946][ T5328] bi_inodes_32bit=0, fixing [ 75.775650][ T5328] bcachefs (loop0): inode points to missing dirent [ 75.775663][ T5328] inum: 4099:4294967295 [ 75.775668][ T5328] mode=100755 [ 75.775674][ T5328] flags=(15300000) [ 75.775679][ T5328] journal_seq=5 [ 75.775684][ T5328] hash_seed=ab878b4c5ab7c89e [ 75.775689][ T5328] hash_type=siphash [ 75.775694][ T5328] bi_size=1050 [ 75.775699][ T5328] bi_sectors=8 [ 75.775705][ T5328] bi_version=0 [ 75.775710][ T5328] bi_atime=1997793410 [ 75.775715][ T5328] bi_ctime=1997793410 [ 75.775721][ T5328] bi_mtime=1997793410 [ 75.775726][ T5328] bi_otime=1997793410 [ 75.775731][ T5328] bi_uid=0 [ 75.775736][ T5328] bi_gid=0 [ 75.775741][ T5328] bi_nlink=0 [ 75.775746][ T5328] bi_generation=0 [ 75.775751][ T5328] bi_dev=0 [ 75.775755][ T5328] bi_data_checksum=0 [ 75.775761][ T5328] bi_compression=0 [ 75.775766][ T5328] bi_project=0 [ 75.775771][ T5328] bi_background_compression=0 [ 75.775777][ T5328] bi_data_replicas=0 [ 75.775782][ T5328] bi_promote_target=0 [ 75.775787][ T5328] bi_foreground_target=0 [ 75.776261][ T5328] bi_background_target=0 [ 75.776268][ T5328] bi_erasure_code=0 [ 75.776273][ T5328] bi_fields_set=0 [ 75.776278][ T5328] bi_dir=4098 [ 75.776284][ T5328] bi_dir_offset=2566586984702133180 [ 75.776289][ T5328] bi_subvol=0 [ 75.776294][ T5328] bi_parent_subvol=0 [ 75.776299][ T5328] bi_nocow=0 [ 75.776304][ T5328] bi_depth=0 [ 75.776309][ T5328] bi_inodes_32bit=0, fixing [ 75.881520][ T5328] done [ 75.883814][ T5328] bcachefs (loop0): check_dirents... [ 75.884888][ T5328] bcachefs (loop0): hash table key at wrong offset: btree dirents inode 4096 offset 6229884513039707068, hashed to 5410109479790105297 [ 75.884902][ T5328] u64s 7 type dirent 4096:6229884513039707068:U32_MAX len 0 ver 0: Í˨ñ« -> 2166030336 -> 1073741825 type subvol, fixing [ 75.897554][ T5328] bcachefs (loop0): hash table key at wrong offset: btree dirents inode 4096 offset 6229884513039707068, hashed to 5410109479790105297 [ 75.897569][ T5328] u64s 7 type dirent 4096:6229884513039707068:U32_MAX len 0 ver 0: Í˨ñ« -> 2166030336 -> 1073741825 type subvol, fixing [ 75.909363][ T5328] ------------[ cut here ]------------ [ 75.911781][ T5328] kernel BUG at fs/bcachefs/fsck.c:954! [ 75.913901][ T5328] Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI [ 75.916273][ T5328] CPU: 0 UID: 0 PID: 5328 Comm: syz.0.0 Not tainted 6.14.0-syzkaller-13443-g56f944529ec2 #0 PREEMPT(full) [ 75.920529][ T5328] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 [ 75.924664][ T5328] RIP: 0010:bch2_fsck_update_backpointers+0x4ed/0x4f0 [ 75.927900][ T5328] Code: e9 2b fc ff ff 89 d9 80 e1 07 38 c1 0f 8c 62 fc ff ff 48 89 df e8 63 77 b7 fd e9 55 fc ff ff e8 39 78 ba 07 e8 74 4e 4d fd 90 <0f> 0b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e [ 75.935233][ T5328] RSP: 0018:ffffc9000d4ce460 EFLAGS: 00010246 [ 75.937937][ T5328] RAX: ffffffff847608cc RBX: 0000000000000010 RCX: 0000000000100000 [ 75.941421][ T5328] RDX: ffffc9000e50a000 RSI: 00000000000fffff RDI: 0000000000100000 [ 75.944495][ T5328] RBP: ffffc9000d4ce600 R08: ffffffff84760529 R09: 0000000000000000 [ 75.947460][ T5328] R10: ffffc9000d4ce530 R11: fffff52001a99caf R12: ffffc9000d4cf290 [ 75.950641][ T5328] R13: dffffc0000000000 R14: ffff888052bda000 R15: ffff888052900000 [ 75.953677][ T5328] FS: 00007f5be4f2b6c0(0000) GS:ffff88808c596000(0000) knlGS:0000000000000000 [ 75.957189][ T5328] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 75.959678][ T5328] CR2: 000055b32eddc088 CR3: 0000000044eda000 CR4: 0000000000352ef0 [ 75.962615][ T5328] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 75.965828][ T5328] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 75.969257][ T5328] Call Trace: [ 75.970564][ T5328] [ 75.971756][ T5328] ? lock_release+0x4e/0x3e0 [ 75.973649][ T5328] ? btree_node_unlock+0xdf/0x230 [ 75.975620][ T5328] ? __pfx_bch2_fsck_update_backpointers+0x10/0x10 [ 75.978218][ T5328] ? __pfx_dirent_hash_key+0x10/0x10 [ 75.980083][ T5328] ? __pfx_dirent_hash_bkey+0x10/0x10 [ 75.982017][ T5328] ? __pfx_dirent_cmp_key+0x10/0x10 [ 75.983963][ T5328] ? __pfx_dirent_cmp_bkey+0x10/0x10 [ 75.985943][ T5328] ? __pfx_dirent_is_visible+0x10/0x10 [ 75.987992][ T5328] ? btree_node_unlock+0xf5/0x230 [ 75.989981][ T5328] ? __pfx_dirent_cmp_bkey+0x10/0x10 [ 75.991879][ T5328] __bch2_str_hash_check_key+0x202c/0x3b50 [ 75.994073][ T5328] ? __pfx_dirent_hash_key+0x10/0x10 [ 75.996003][ T5328] ? __pfx_dirent_hash_bkey+0x10/0x10 [ 75.998114][ T5328] ? __pfx_dirent_cmp_key+0x10/0x10 [ 76.000019][ T5328] ? __pfx_dirent_cmp_bkey+0x10/0x10 [ 76.001939][ T5328] ? __pfx_dirent_is_visible+0x10/0x10 [ 76.004311][ T5328] ? __pfx_dirent_hash_bkey+0x10/0x10 [ 76.006396][ T5328] ? __pfx_dirent_is_visible+0x10/0x10 [ 76.008568][ T5328] ? __pfx_dirent_cmp_bkey+0x10/0x10 [ 76.010509][ T5328] ? __pfx___bch2_str_hash_check_key+0x10/0x10 [ 76.012666][ T5328] ? rcu_is_watching+0x15/0xb0 [ 76.014238][ T5328] ? kfree+0x54/0x430 [ 76.015826][ T5328] ? bch2_printbuf_exit+0x6d/0xa0 [ 76.017849][ T5328] ? __pfx_walk_inode+0x10/0x10 [ 76.019619][ T5328] ? bch2_printbuf_exit+0x6d/0xa0 [ 76.021412][ T5328] ? check_key_has_inode+0x1b3/0x14d0 [ 76.023393][ T5328] ? __bch2_str_hash_check_key+0x1902/0x3b50 [ 76.025592][ T5328] ? __asan_memset+0x23/0x50 [ 76.027280][ T5328] ? __bch2_str_hash_check_key+0x106f/0x3b50 [ 76.029489][ T5328] ? __bch2_str_hash_check_key+0x106f/0x3b50 [ 76.031659][ T5328] ? __bch2_str_hash_check_key+0x12cb/0x3b50 [ 76.033836][ T5328] ? __pfx_dirent_hash_bkey+0x10/0x10 [ 76.036024][ T5328] bch2_check_dirents+0x2d45/0x3b90 [ 76.038297][ T5328] ? __pfx_bch2_check_dirents+0x10/0x10 [ 76.040618][ T5328] ? __pfx__raw_spin_unlock_irqrestore+0x10/0x10 [ 76.043148][ T5328] ? __pfx__prb_read_valid+0x10/0x10 [ 76.045031][ T5328] ? console_flush_all+0xda3/0xec0 [ 76.046745][ T5328] ? up+0x111/0x1c0 [ 76.048025][ T5328] ? prb_read_valid+0xab/0xf0 [ 76.049562][ T5328] ? __pfx___console_unlock+0x10/0x10 [ 76.051503][ T5328] ? __pfx_prb_read_valid+0x10/0x10 [ 76.053721][ T5328] ? is_printk_cpu_sync_owner+0x32/0x40 [ 76.056075][ T5328] ? console_unlock+0x2fe/0x3b0 [ 76.058136][ T5328] ? irq_work_queue+0xd1/0x150 [ 76.060043][ T5328] ? __pfx_vprintk_emit+0x10/0x10 [ 76.062016][ T5328] ? bch2_check_dirents+0x2fd/0x3b90 [ 76.064172][ T5328] bch2_run_recovery_pass+0xf0/0x1e0 [ 76.066402][ T5328] bch2_run_recovery_passes+0x2ad/0xa90 [ 76.068653][ T5328] bch2_fs_recovery+0x292a/0x3e20 [ 76.070686][ T5328] ? __pfx_bch2_fs_recovery+0x10/0x10 [ 76.072875][ T5328] ? __lock_acquire+0xad5/0xd80 [ 76.074813][ T5328] ? __lock_acquire+0xad5/0xd80 [ 76.076855][ T5328] ? bch2_fs_start+0x279/0x620 [ 76.078830][ T5328] ? up_write+0x1ab/0x590 [ 76.080598][ T5328] ? bch2_get_next_online_dev+0x4ab/0x4e0 [ 76.082915][ T5328] ? bch2_get_next_online_dev+0x2e/0x4e0 [ 76.085221][ T5328] ? __pfx_up_write+0x10/0x10 [ 76.087258][ T5328] ? llist_reverse_order+0x72/0x90 [ 76.089491][ T5328] bch2_fs_start+0x310/0x620 [ 76.091642][ T5328] bch2_fs_get_tree+0x113e/0x18f0 [ 76.093780][ T5328] ? __pfx_bch2_fs_get_tree+0x10/0x10 [ 76.096137][ T5328] ? vfs_parse_monolithic_sep+0x427/0x460 [ 76.098637][ T5328] ? __pfx_vfs_parse_comma_sep+0x10/0x10 [ 76.100845][ T5328] ? rcu_is_watching+0x15/0xb0 [ 76.102757][ T5328] ? apparmor_capable+0x13b/0x1b0 [ 76.105588][ T5328] vfs_get_tree+0x90/0x2b0 [ 76.107375][ T5328] do_new_mount+0x2cf/0xb70 [ 76.109056][ T5328] ? __pfx_do_new_mount+0x10/0x10 [ 76.111031][ T5328] __se_sys_mount+0x38c/0x400 [ 76.112697][ T5328] ? __pfx___se_sys_mount+0x10/0x10 [ 76.114556][ T5328] ? __x64_sys_mount+0x20/0xc0 [ 76.116225][ T5328] do_syscall_64+0xf3/0x230 [ 76.117850][ T5328] ? clear_bhb_loop+0x45/0xa0 [ 76.119575][ T5328] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 76.121523][ T5328] RIP: 0033:0x7f5be418e90a [ 76.122951][ T5328] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb a6 e8 de 1a 00 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 [ 76.129042][ T5328] RSP: 002b:00007f5be4f2ae68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [ 76.131826][ T5328] RAX: ffffffffffffffda RBX: 00007f5be4f2aef0 RCX: 00007f5be418e90a [ 76.134582][ T5328] RDX: 000020000000f640 RSI: 0000200000000140 RDI: 00007f5be4f2aeb0 [ 76.137406][ T5328] RBP: 000020000000f640 R08: 00007f5be4f2aef0 R09: 0000000000000000 [ 76.140377][ T5328] R10: 0000000000000000 R11: 0000000000000246 R12: 0000200000000140 [ 76.143288][ T5328] R13: 00007f5be4f2aeb0 R14: 000000000000f61b R15: 0000200000000340 [ 76.146127][ T5328] [ 76.147253][ T5328] Modules linked in: [ 76.149810][ T5328] ---[ end trace 0000000000000000 ]--- [ 76.157120][ T5328] RIP: 0010:bch2_fsck_update_backpointers+0x4ed/0x4f0 [ 76.163655][ T5328] Code: e9 2b fc ff ff 89 d9 80 e1 07 38 c1 0f 8c 62 fc ff ff 48 89 df e8 63 77 b7 fd e9 55 fc ff ff e8 39 78 ba 07 e8 74 4e 4d fd 90 <0f> 0b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e [ 76.171205][ T5328] RSP: 0018:ffffc9000d4ce460 EFLAGS: 00010246 [ 76.173369][ T5328] RAX: ffffffff847608cc RBX: 0000000000000010 RCX: 0000000000100000 [ 76.176736][ T5328] RDX: ffffc9000e50a000 RSI: 00000000000fffff RDI: 0000000000100000 [ 76.180178][ T5328] RBP: ffffc9000d4ce600 R08: ffffffff84760529 R09: 0000000000000000 [ 76.183407][ T5328] R10: ffffc9000d4ce530 R11: fffff52001a99caf R12: ffffc9000d4cf290 [ 76.186669][ T5328] R13: dffffc0000000000 R14: ffff888052bda000 R15: ffff888052900000 [ 76.190464][ T5328] FS: 00007f5be4f2b6c0(0000) GS:ffff88808c596000(0000) knlGS:0000000000000000 [ 76.194166][ T5328] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 76.196845][ T5328] CR2: 000055b32eddc088 CR3: 0000000044eda000 CR4: 0000000000352ef0 [ 76.200538][ T5328] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 76.203356][ T5328] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 76.206444][ T5328] Kernel panic - not syncing: Fatal exception [ 76.209237][ T5328] Kernel Offset: disabled [ 76.210885][ T5328] Rebooting in 86400 seconds..